精英家教網 > 高中數學 > 題目詳情

【題目】如圖,矩形中,,,的中點,點,分別在線段,上運動(其中不與,重合,不與,重合),且,沿折起,得到三棱錐,則三棱錐體積的最大值為__________;當三棱錐體積最大時,其外接球的表面積的值為_______________.

【答案】

【解析】

(1)依題意設,則,利用椎體體積公式列式,再根據二次函數頂點式和正弦函數的取值范圍得出最大值.

(2)依題意建立如圖空間直角坐標系,列出各點的坐標,設球心坐標, 根據球心到各點距離等半徑求球心坐標,即可得出半徑,最后求出三棱錐的外接球面積.

解:依題意設,

,

因為,所以,

與平面所成角為

,時三棱錐體積取得最大值.

所以三棱錐體積的最大值為.

故答案為:

(2)由(1)知道三棱錐體積取得最大值時,

與平面所成角,平面,

折起如圖所示:依題意可建立如圖所示空間直角坐標系:

所以,,,

設三棱錐外接球的球心為

,所以

外接球面積為.

故答案為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓錐的頂點為A,高和底面的半徑相等,BE是底面圓的一條直徑,點D為底面圓周上的一點,且∠ABD60°,則異面直線ABDE所成角的正弦值為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為 t為參數),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線C的極坐標方程為.

1)求曲線C的直角坐標方程及直線l的普通方程;

2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標變為原來的2倍,得到曲線,求曲線上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中勾股容方問題:今有勾五步,股十二步,問勾中容方幾何?魏晉時期數學家劉徽在其《九章算術注》中利用出入相補原理給出了這個問題的一般解法:如圖1,用對角線將長和寬分別為的矩形分成兩個直角三角形,每個直角三角形再分成一個內接正方形(黃)和兩個小直角三角形(朱、青).將三種顏色的圖形進行重組,得到如圖2所示的矩形.該矩形長為,寬為內接正方形的邊長.由劉徽構造的圖形還可以得到許多重要的結論,如圖3.設為斜邊的中點,作直角三角形的內接正方形對角線,過點于點,則下列推理正確的是(

①由圖1和圖2面積相等得;

②由可得

③由可得;

④由可得

A.①②③④B.①②④C.②③④D.①③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠為提高生產效率,開展技術創新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據工人完成生產任務的工作時間(單位:min)繪制了莖葉圖:則下列結論中表述不正確的是

A. 第一種生產方式的工人中,有75%的工人完成生產任務所需要的時間至少80分鐘

B. 第二種生產方式比第一種生產方式的效率更高

C. 這40名工人完成任務所需時間的中位數為80

D. 無論哪種生產方式的工人完成生產任務平均所需要的時間都是80分鐘.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中是自然對數的底數,是函數的導數.

1)若上的單調函數,求的值;

2)當時,求證:若,且,則.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的普通方程為:,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,正方形的頂點都在上,且逆時針依次排列,點的極坐標為

1)寫出曲線的參數方程,及點的直角坐標;

2)設為橢圓上的任意一點,求:的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設點是拋物線的焦點,直線與拋物線相切于點(點位于第一象限),并與拋物線的準線相交于點.過點且與直線垂直的直線交拋物線于另一點,交軸于點,連結

1)證明:為等腰三角形;

2)求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統計了活動剛推出一周內每一天使用掃碼支付的人次,表示活動推出的天數,表示每天使用掃碼支付的人次(單位:十人次),統計數據如表下所示:

根據以上數據,繪制了散點圖.

1)根據散點圖判斷,在推廣期內,均為大于零的常數),哪一個適宜作為掃碼支付的人次關于活動推出天數的回歸方程類型?(給出判斷即可,不必說明理由);

2)根據(1)的判斷結果及表1中的數據,建立的回歸方程,并預測活動推出第8天使用掃碼支付的人次;

3)推廣期結束后,車隊對乘客的支付方式進行統計,結果如下表:

西安公交六公司車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據以往的經驗可知,每輛車每個月的運營成本約為萬元.已知該線路公交車票價為元,使用現金支付的乘客無優惠,使用乘車卡支付的乘客享受折優惠,掃碼支付的乘客隨機優惠,根據統計結果得知,使用掃碼支付的乘客中有的概率享受折優惠,有的概率享受折優惠,有的概率享受折優惠.預計該車隊每輛車每個月有萬人次乘車,根據所給數據以事件發生的頻率作為相應事件發生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設這批車需要)年才能開始盈利,求的值.

參考數據:

其中其中,,

參考公式:對于一組數據,,,,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视