【題目】已知橢圓(
)的離心率為
,且經過點
.
(1)求橢圓的方程;
(2)過點作直線
與橢圓
交于不同的兩點
,
,試問在
軸上是否存在定點
使得直線
與直線
恰關于
軸對稱?若存在,求出點
的坐標;若不存在,說明理由.
【答案】(1) (2)見解析
【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線
恰關于
軸對稱,等價于
的斜率互為相反數,即
,整理
.設直線
的方程為
,與橢圓
聯立,將韋達定理代入整理即可.
(1)由題意可得,
,又
,
解得,
.
所以,橢圓的方程為
(2)存在定點,滿足直線
與直線
恰關于
軸對稱.
設直線的方程為
,與橢圓
聯立,整理得,
.
設,
,定點
.(依題意
則由韋達定理可得,,
.
直線與直線
恰關于
軸對稱,等價于
的斜率互為相反數.
所以,,即得
.
又,
,
所以,,整理得,
.
從而可得,,
即,
所以,當,即
時,直線
與直線
恰關于
軸對稱成立. 特別地,當直線
為
軸時,
也符合題意. 綜上所述,存在
軸上的定點
,滿足直線
與直線
恰關于
軸對稱.
科目:高中數學 來源: 題型:
【題目】若無窮數列滿足:
,當
,
時.
其中
表示
,
,
,
中的最大項
,有以下結論:
若數列
是常數列,則
若數列
是公差
的等差數列,則
;
若數列
是公比為q的等比數列,則
則其中正確的結論是______寫出所有正確結論的序號
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在新型冠狀病毒疫情期間,商業活動受到很大影響某小型零售連鎖店總部統計了本地區50家加盟店2月份的零售情況,統計數據如圖所示.據估計,平均銷售收入比去年同期下降40%,則去年2月份這50家加盟店的平均銷售收入約為( )
A.6.6萬元B.3.96萬元C.9.9萬元D.7.92萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2014年7月18日15時,超強臺風“威馬遜”登陸海南。畵y計,本次臺風造成全省直接經濟損失119.52億元.適逢暑假,小明調查住在自己小區的50戶居民由于臺風造成的經濟損失,作出如下頻率分布直方圖:
經濟損失 4000元以下 | 經濟損失 4000元以上 | 合計 | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計 |
(1)臺風后區委會號召小區居民為臺風重災區捐款,小明調查的50戶居民捐款情況如上表,在表格空白處填寫正確數字,并說明是否有以上的把握認為捐款數額是否多于或少于500元和自身經濟損失是否到4000元有關?
(2)臺風造成了小區多戶居民門窗損壞,若小區所有居民的門窗均由李師傅和張師傅兩人進行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區,張師傅每天早上在7:30到8:30分之間的任意時刻來到小區,求連續3天內,李師傅比張師傅早到小區的天數的數學期望.
附:臨界值表
參考公式: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
為自然對數的底數,則對于函數
有下列四個命題:
命題1:存在實數使得函數
沒有零點
命題2:存在實數使得函數
有
個零點
命題3:存在實數使得函數
有
個零點
命題4:存在實數使得函數
有
個零點
其中,正確的命題的個數是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.
(1)摸出的3個球為白球的概率是多少?
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
如圖,長方體ABCD–A1B1C1D1的底面ABCD是正方形,點E在棱AA1上,BE⊥EC1.
(1)證明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線上的任意一點到兩定點
、
距離之和為
,直線
交曲線
于
兩點,
為坐標原點.
(1)求曲線的方程;
(2)若不過點
且不平行于坐標軸,記線段
的中點為
,求證:直線
的斜率與
的斜率的乘積為定值;
(3)若直線過點
,求
面積的最大值,以及取最大值時直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com