【題目】如圖,橢圓經過點
,且點
到橢圓的兩焦點的距離之和為
.
(l)求橢圓的標準方程;
(2)若是橢圓
上的兩個點,線段
的中垂線
的斜率為
且直線
與
交于點
,
為坐標原點,求證:
三點共線.
科目:高中數學 來源: 題型:
【題目】已知點A(x1,y1),D(x2,y2)其中(x1<x2)是曲線y2=9x(y≥0).上的兩點,A,D兩點在x軸上的射影分別為點B,C且|BC|=3.
(Ⅰ)當點B的坐標為(1,0)時,求直線AD的方程:
(Ⅱ)記△AOD的面積為S1,梯形ABCD的面積為S2,求的范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義函數,
(0,
)為
型函數,共中
.
(1)若是
型函數,求函數
的值域;
(2)若是
型函數,求函數
極值點個數;
(3)若是
型函數,在
上有三點A、B、C橫坐標分別為
、
、
,其中
<
<
,試判斷直線AB的斜率與直線BC的斜率的大小并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線l:y=2x+2,若l與橢圓 的交點為A,B,點P為橢圓上的動點,則使△PAB的面積為
的點P的個數為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在對人們的休閑方式的一次調查中,共調查了110人,其中女性50人,男性60人.女性中有30人主要的休閑方式是看電視,另外20人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外40人主要的休閑方式是運動.
(1)根據以上數據建立一個列聯表;
(2)判斷是否有99%的把握認為性別與休閑方式有關系.
下面臨界值表供參考:
0.10 | 0.05 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
(參考公式:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,AC∩BD=O,△PAC是邊長為2的等邊三角形,.
(1)求四棱錐P-ABCD的體積VP-ABCD;
(2)在線段PB上是否存在一點M,使得CM∥平面BDF?如果存在,求的值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,將一塊直角三角形木板置于平面直角坐標系中,已知
,點
是三角形木板內一點,現因三角形木板中陰影部分受到損壞,要把損壞部分鋸掉,可用經過點
的任一直線
將三角形木板鋸成
.設直線
的斜率為
.
(Ⅰ)求點的坐標及直線
的斜率
的范圍;
(Ⅱ)令的面積為
,試求出
的取值范圍;
(Ⅲ)令(Ⅱ)中的取值范圍為集合
,若
對
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,圓方程為
,點
,直線
過點
(1)如圖1,直線的斜率為,直線
交圓
于
不同兩點,求弦
的長度;
(2)動點在圓
上作圓周運動,線段
的中點為點
,求點
的軌跡方程;
(3)在(1)中,如圖2,過點作直線
,交圓
于
不同兩點,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的傾斜角為
,且經過點
.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足
,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;
(Ⅱ)設直線與曲線C交于P,Q兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com