【題目】節日前夕,小李在家門前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨立,且都在通電后的4秒內任一時刻等可能發生,然后每串彩燈以4秒為間隔閃亮,那么這兩串彩燈同時通電后,它們第一次閃亮的時候相差不超過2秒的概率是( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】某學校課題組為了研究學生的數學成績與物理成績之間的關系,隨機抽取高二年級名學生某次考試成績(百分制)如下表所示:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
數學成績 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 |
物理成績 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 |
序號 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數學成績 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若數學成績分以上為優秀,物理成績
分(含
分)以上為優秀.
(Ⅰ)根據上表完成下面的列聯表:
數學成績優秀 | 數學成績不優秀 | 合計 | |
物理成績優秀 | |||
物理成績不優秀 | 12 | ||
合計 | 20 |
(Ⅱ)根據題(Ⅰ)中表格的數據計算,有多少的把握認為學生的數學成績與物理成績之間有關系?
(Ⅲ)若按下面的方法從這人中抽取
人來了解有關情況:將一個標有數字
,
,
,
,
,
的正六面體骰子連續投擲兩次,記朝上的兩個數字的乘積為被抽取人的序號,試求:抽到
號的概率.
參考數據公式:①獨立性檢驗臨界值表
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
②獨立性檢驗隨機變量值的計算公式:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過10萬元時,按銷售利潤的16%進行獎勵;當銷售利潤超過10萬元時,若超出A萬元,則超出部分按2log5(A+1)進行獎勵.記獎金y(單位:萬元),銷售利潤x(單位:萬元)
(1)寫出該公司激勵銷售人員的獎勵方案的函數模型;
(2)如果業務員老張獲得5.6萬元的獎金,那么他的銷售利潤是多少萬元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)對任意實數x,y恒有f(x+y)=f(x)+f(y)且當x>0,f(x)<0.
給出下列四個結論:
①f(0)=0;②f(x)為偶函數;
③f(x)為R上減函數;④f(x)為R上增函數.
其中正確的結論是( 。
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為推行“新課堂”教學法, 某化學老師分別用傳統教學和“新課堂”兩種不同的教學方式, 在甲、乙兩個平行班進行教學實驗, 為了解教學效果, 期中考試后, 分別從兩個班級中各隨機抽取20名學生的成績進行統計, 作出的莖葉圖如下圖, 記成績不低于70分者為“成績優良”.
(1) 分別計算甲、乙兩班20個樣本中, 化學成績前十的平均分, 并據此判斷哪種教學方式的教學效果更佳;
甲班 | 乙班 | 總計 | |
成績優良 | |||
成績不優良 | |||
總 計 |
(2)由以上統計數據填寫下面2×2列聯表,是否有95%的把握認為“成績優良與教學方式關”?
0.05 | 0.010 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點
,焦點在
軸上,它的一個頂點恰好是拋物線
的焦點,它的離心率是雙曲線
的離心率的倒數.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過橢圓的右焦點
作直線
交橢圓
于
、
兩點,交
軸于
點,若
,
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分15分)已知數列{an}的前n項和為Sn,且an是Sn與2的等差中項,數列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上。
(1)求a1和a2的值;
(2)求數列{an},{bn}的通項an和bn;
(3)設cn=an·bn,求數列{cn}的前n項和Tn
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知真命題:“函數y=f(x)的圖象關于點P(a,b)成中心對稱圖形”的充要條件為“函數y=f(x+a)﹣b 是奇函數”.
(1)將函數g(x)=x3﹣3x2的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應的函數解析式,并利用題設中的真命題求函數g(x)圖象對稱中心的坐標;
(2)求函數h(x)= 圖象對稱中心的坐標;
(3)已知命題:“函數 y=f(x)的圖象關于某直線成軸對稱圖象”的充要條件為“存在實數a和b,使得函數y=f(x+a)﹣b 是偶函數”.判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設的真命題對它進行修改,使之成為真命題(不必證明).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com