【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數學、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取
名學生進行調查.
(1)已知抽取的名學生中含男生110人,求
的值及抽取到的女生人數;
(2)學校計劃在高二上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調杳(假定每名學生在這兩個科目中必須洗擇一個科目且只能選擇一個科目).下表是根據調查結果得到的
列聯表,請將列聯表補充完整,并判斷是否有
的把握認為選擇科目與性別有關?說明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計 |
男生 | 50 | ||
女生 | 30 | ||
總計 |
(3)在(2)的條件下,從抽取的選擇“物理”的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中
.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1),女生人數為
;(2)列聯表見解析,有
的把握認為選擇科目與性別有關,理由見解析;(3)
【解析】
(1)利用公式:每層抽取數總人數
抽樣比計算;
(2)利用公式計算即可;
(3)采用枚舉法,枚舉出基本事件總數以及事件“2人中至少有1名女生”所包含的基本事件個數,再利用古典概型的概率計算公式計算即可.
(1)因為,所以
,女生人數為
.
(2)列聯表為:
性別 | 選擇物理 | 選擇歷史 | 總計 |
男生 | 60 | 50 | 110 |
女生 | 30 | 60 | 90 |
總計 | 90 | 110 | 200 |
的觀測值
,所以有
的把握認為選擇科目與性別有關.
(3) 從90個選擇物理的學生中采用分層抽樣的方法抽6名, 這6名學生中有4名男生,
記為,
,
,
;2名女生記為
,
.抽取2人所有的情況為
、
、
、
、
、
、
、
、
、
、
、
、
、
、
,共15種,選取的2人中至少有1名女生情況的有
、
、
、
、
、
、
、
、
,共9種,故所求
概率為.
科目:高中數學 來源: 題型:
【題目】近年來,我國許多省市霧霾天氣頻發,為增強市民的環境保護意識,某市面向全市征召名義務宣傳志愿者,成立環境保護宣傳組織,現把該組織的成員按年齡分成
組第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示,已知第
組有
人.
(1)求該組織的人數;
(2)若在第組中用分層抽樣的方法抽取
名志愿者參加某社區的宣傳活動,應從第
組各抽取多少名志愿者?
(3)在(2)的條件下,該組織決定在這名志愿者中隨機抽取
名志愿者介紹宣傳經驗,求第
組至少有
名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是曲線
上的動點,且點
到
的距離比它到x軸的距離大1.直線
與直線
的交點為
.
(1)求曲線的軌跡方程;
(2)已知是曲線
上不同的兩點,線段
的垂直垂直平分線交曲線
于
兩點,若
的中點為
,則是否存在點
,使得
四點內接于以點
為圓心的圓上;若存在,求出點
坐標以及圓
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表是某公司2018年5~12月份研發費用(百萬元)和產品銷量(萬臺)的具體數據:
月 份 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
研發費用(百萬元) | 2 | 3 | 6 | 10 | 21 | 13 | 15 | 18 |
產品銷量(萬臺) | 1 | 1 | 2 | 2.5 | 6 | 3.5 | 3.5 | 4.5 |
(Ⅰ)根據數據可知與
之間存在線性相關關系,求出
與
的線性回歸方程(系數精確到0.01);
(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當
時,每位員工每日獎勵200元;當
時,每位員工每日獎勵300元;當
時,每位員工每日獎勵400元.現已知該公司某月份日銷售
(萬臺)服從正態分布
(其中
是2018年5-12月產品銷售平均數的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數大約多少元.
參考數據:,
,
,
,
參考公式:相關系數,其回歸直線
中的
,若隨機變量
服從正態分布
,則
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
(
),圓
:
(
),拋物線
上的點到其準線的距離的最小值為
.
(1)求拋物線的方程及其準線方程;
(2)如圖,點是拋物線
在第一象限內一點,過點P作圓
的兩條切線分別交拋物線
于點A,B(A,B異于點P),問是否存在圓
使AB恰為其切線?若存在,求出r的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年空氣質量逐步惡化,霧霾天氣現象出現增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫院隨機的對入院人進行了問卷調查得到了如下的列聯表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | |||
女 | |||
合計 |
已知在全部人中隨機抽取
人,抽到患心肺疾病的人的概率為
.
(1)請將上面的列聯表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關?請說明你的理由;
(2)已知在不患心肺疾病的位男性中,有
位從事的是戶外作業的工作.為了指導市民盡可能地減少因霧霾天氣對身體的傷害,現從不患心肺疾病的
位男性中,選出
人進行問卷調查,求所選的
人中至少有一位從事的是戶外作業的概率.
下面的臨界值表供參考:
,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左焦點為
,右頂點為
,離心率為
.已知
是拋物線
的焦點,
到拋物線的準線
的距離為
.
(I)求橢圓的方程和拋物線的方程;
(II)設上兩點
,
關于
軸對稱,直線
與橢圓相交于點
(
異于點
),直線
與
軸相交于點
.若
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知矩形中,
,E,F分別為
,
的中點.沿
將矩形
折起,使
,如圖所示.設P、Q分別為線段
,
的中點,連接
.
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com