【題目】如圖,△ABC的頂點都在圓O上,點P在BC的延長線上,且PA與圓O切于點A.
(1)若∠ACB=70°,求∠BAP的度數;
(2)若 =
,求
的值.
【答案】
(1)解:∵PA與圓O切于點A,
∴∠CAP=∠ABC,
∵∠ACP=∠ABC+∠BAC,
∴∠ACP=∠PAC+∠BAC=∠BAP,
∴∠ACB+∠BAP=∠ACB+∠ACP=180°,
∵∠ACB=70°,
∴∠BAP=110°
(2)解:∵PA與圓O切于點A,
∴∠CAP=∠ABC,
∵∠ACP=∠ABC+∠BAC,
∴∠ACP=∠PAC+∠BAC=∠BAP,
∴∠ACB+∠BAP=∠ACB+∠ACP=180°,
∵∠ACB=70°,
∴∠BAP=110°
【解析】(1)若∠ACB=70°,證明∠ACB+∠BAP=∠ACB+∠ACP=180°,即可求∠BAP的度數;(2)證明△PAC∽△PBA,利用切割線定理,結合 =
,求
的值.
科目:高中數學 來源: 題型:
【題目】已知2件次品和3件正品混放在一起,現需要通過檢測將其區分,每次隨機一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.
(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產品需要費用100元,設X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列和均值(數學期望)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】福利彩票“雙色球”中紅球的號碼可以從01,02,03,…,32,33這33個二位號碼中選取,小明利用如圖所示的隨機數表選取紅色球的6個號碼,選取方法是從第1行第9列和第10列的數字開始從左到右依次選取兩個數字,則第四個被選中的紅色球號碼為( )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
A. 12 B. 33 C. 06 D. 16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】極坐標系的極點為直角坐標系的原點,極軸為x軸的正半軸,兩種坐標系中的長度單位相同,已知曲線C的極坐標方程為ρ=2(cosθ+sinθ).
(1)求C的直角坐標方程;
(2)直線l: 為參數)與曲線C交于A,B兩點,與y軸交于E,求|EA|+|EB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017重慶二診】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數,并將數據整理如下:
(1)已知某人一天的走路步數超過8000步被系統評定“積極型”,否則為“懈怠型”,根據題意完成下面的列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以這40位好友該日走路步數的頻率分布來估計其所有微信好友每日走路步數的概率分布,現從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有
人,設
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x|x﹣a|,a∈R,g(x)=x2﹣1.
(1)當a=1時,解不等式f(x)≥g(x);
(2)記函數f(x)在區間[0,2]上的最大值為F(a),求F(a)的表達式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com