精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
在數列,中,a1=2,b1=4,且成等差數列,成等比數列(
(Ⅰ)求a2,a3a4b2,b3,b4,由此猜測,的通項公式,并證明你的結論;
(Ⅱ)證明:
(Ⅰ),

(Ⅱ)略。

(Ⅰ)由條件得
由此可得
.······································ 2分
猜測.································································ 4分
用數學歸納法證明:
①當n=1時,由上可得結論成立.
②假設當n=k時,結論成立,即
,
那么當n=k+1時,

所以當n=k+1時,結論也成立.
由①②,可知對一切正整數都成立.······························· 7分
(Ⅱ)
n≥2時,由(Ⅰ)知.·································· 9分



綜上,原不等式成立. ············································································ 12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設向量a =(),b =()(),函數 a·b在[0,1]上的最小值與最大值的和為,又數列{}滿足:
(1)求證:
(2)求的表達式;
(3),試問數列{}中,是否存在正整數,使得對于任意的正整數,都有成立?證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知{an}是一個公差大于0的等差數列,且滿足a3a6=55,   a2+a7=16.
(Ⅰ)求數列{an}的通項公式:
(Ⅱ)若數列{an}和數列{bn}滿足等式:an,求數列{bn}的前n項和Sn    

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(理)已知函數(I)求
的值;(II)數列{a­n}滿足
數列{an}是等差數列嗎?請給予證明;
(III),試比較nSn的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

將正分割成個全等的小正三角形(圖2,圖3分別給出了n="2," 3的情形),在每個三角形的頂點各放置一個數,使位于⊿ABC的三邊及平行于某邊的任一直線上的數(當數的個數不少于3時)都分別依次成等差數列.若頂點A ,B ,C處的三個數互不相同且和為1,記所有頂點上的數之和為,則有        ,… ,             .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分.
已知是公差為的等差數列,是公比為的等比數列.
(1)      若,是否存在,有說明理由;
(2)      找出所有數列,使對一切,,并說明理由;
(3)      若試確定所有的,使數列中存在某個連續項的和是數列中的一項,請證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設數列中,,則通項 ___________。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知數列對任意的滿足,且,那么等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

 ,則對任意正整數都成立的是( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视