【題目】某商品最近30天的價格f(t)(元)與時間t滿足關系式:f(t)= ,且知銷售量g(t)與時間t滿足關系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.
科目:高中數學 來源: 題型:
【題目】某險種的基本保費為(單位:元),繼續購買該險種的投保人稱為續保人,
續保人本年度的保費與其上年度出險次數的關聯如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 | |
保費 |
隨機調查了該險種的400名續保人在一年內的出險情況,得到如下統計表:
出險次數 | 0 | 1 | 2 | 3 | 4 | |
頻數 | 120 | 100 | 60 | 60 | 40 | 20 |
(Ⅰ)記A為事件:“一續保人本年度的保費不高于基本保費”.求的估計值;
(Ⅱ)記B為事件:“一續保人本年度的保費高于基本保費但不高于基本保費的190%”.
求的估計值;
(III)求續保人本年度的平均保費估計值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)為定義在R上的奇函數,且在(0,+∞)內是增函數,又f(2)=0,則不等式x5f(x)>0的解集為( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司的兩個部門招聘工作人員,應聘者從 T1、T2兩組試題中選擇一組參加測試,成績合格者可簽約.甲、乙、丙、丁四人參加應聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是
,且考試是否合格互不影響.
(1)求丙、丁未簽約的概率;
(2)記簽約人數為 X,求 X的分布列和數學期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數,當x>0時,f(x)=x2﹣2x.
(1)畫出f(x)的簡圖,并求f(x)的解析式;
(2)利用圖象討論方程f(x)=k的根的情況.(只需寫出結果,不要解答過程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:函數f(x)=loga(2+x)﹣loga(2﹣x)(a>0且a≠1)
(Ⅰ)求f(x)定義域;
(Ⅱ)判斷f(x)的奇偶性,并說明理由;
(Ⅲ)求使f(x)>0的x的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com