精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的參數方程為為參數).

(1)求曲線的直角坐標方程;曲線的極坐標方程。

(2)當曲線與曲線有兩個公共點時,求實數的取值范圍.

【答案】(1)見解析;(2).

【解析】

(1)利用極坐標與平面直角坐標之間的轉換關系,得到曲線的直角坐標方程與曲線的極坐標方程,注意題中所給的角的范圍,從而得到其為上半圓,注意范圍;

(2)利用直線與圓的位置關系由圓心到直線的距離來約束,此時注意是上半圓,從而求得結果.

(1)由,即:,

∴曲線為以(1,0)為圓心,1為半徑的圓的上半部分,從而直角坐標方程為:.-

曲線的極坐標方程為

(2)直線的普通方程為:,

當直線與半圓相切時 ,

解得(舍去)或,

當直線過點(2,0)時,,故實數的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2ccosB=2a+b,若△ABC的面積為S= c,則ab的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)當 時,求函數圖象在點處的切線方程;

(2)當時,討論函數的單調性;

(3)是否存在實數,對任意恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,函數.

(1) 若,求曲線處的切線方程;

(2)求函數單調區間

(3) 若有兩個零點,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

求分數在[120,130)內的頻率,并補全這個頻

率分布直方圖;

統計方法中,同一組數據常用該組區間的中點

值作為代表,據此估計本次考試的平均分;

(3)用分層抽樣的方法在分數段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數段[120,130)內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量(單位:克)分別在,,,,中,經統計得頻率分布直方圖如圖所示.

(1)現按分層抽樣從質量為的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率;

(2)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:

方案:所有芒果以10元/千克收購;

方案:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個不透明的袋子裝有4個完全相同的小球,球上分別標有數字為0,1,2,2,現甲從中摸出一個球后便放回,乙再從中摸出一個球,若摸出的球上數字大即獲勝(若數字相同則為平局),則在甲獲勝的條件下,乙摸1號球的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视