【題目】已知△ABC中,頂點A(1,0)、重心G垂心H
(1)求邊BC所在直線的方程;
(2)求邊AB、AC所在直線的方程;
(3)若P是△ABC內部(包括邊界)一動點,求的最大值.
【答案】(1);(2)
,
;(3)
【解析】
(1)設,求出BC的中點坐標和斜率,即可求出邊BC所在直線的方程;
(2)設,設線段
中點為D,利用
與
共線列一個方程,利用直線AB和直線CH垂直再列一個方程,兩個方程解出即可求出B,C坐標,
進而可以求出邊AB、AC所在直線的方程;
(3)設,通過計算得出
,令
,作出△ABC,觀察圖像可得
取最大時所經過的點,代入即可求出最大值.
解:(1)設
則,
,
即BC的中點坐標為,又
。
所以邊BC所在直線的方程為,即
;
(2)由(1)設,線段
中點為D
則D點坐標為,且
與
共線,直線AB和直線CH垂直
又,
則,
解得:,則
,
所以邊AB的方程為,即
,
邊AC的方程為,即
;
(3)若P是△ABC內部(包括邊界)一動點,設,
,
令,則
,
作出△ABC,如圖:
要最大,當
過點
時可取最大值,
代入點,得
,
即的最大值為
.
科目:高中數學 來源: 題型:
【題目】若三次函數(
)的圖象上存在相互平行且距離為
的兩條切線,則稱這兩條切線為一組“距離為
的友好切線組”.已知
,則函數
的圖象上“距離為4的友好切線組”有( )組?
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐的底面
為直角梯形,
,
,
,
為正三角形.
(1)點為棱
上一點,若
平面
,
,求實數
的值;
(2)求點B到平面SAD的距離.
【答案】(1);(2)
【解析】試題分析:(1)由平面
,可證
,進而證得四邊形
為平行四邊形,根據
,可得
;
(2)利用等體積法可求點
到平面
的距離.
試題解析:((1)因為平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因為,所以四邊形BCDM為平行四邊形,又
,所以M為AB的中點.
因為,
.
(2)因為
,
,
所以平面
,
又因為平面
,
所以平面平面
,
平面平面
,
在平面內過點
作
直線
于點
,則
平面
,
在和
中,
因為,所以
,
又由題知,
所以,
由已知求得,所以
,
連接BD,則,
又求得的面積為
,
所以由點B 到平面
的距離為
.
【題型】解答題
【結束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數
的函數關系式;
(2)根據該公司所有派送員100天的派送記錄,發現派送員的日平均派送單數滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在
時,日平均派送量為
單.
若將頻率視為概率,回答下列問題:
①根據以上數據,設每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪
的分布列,數學期望及方差;
②結合①中的數據,根據統計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數據: ,
,
,
,
,
,
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一舉行了一次數學競賽,為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(得分取正整數,滿分為)作為樣本(樣本容量為
)進行統計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]的頻數分別為8,2.
(1)求樣本容量和頻率分布直方圖中的
的值;
(2)估計本次競賽學生成績的中位數;
(3)在選取的樣本中,從競賽成績在分以上(含
分)的學生中隨機抽取
名學生,求所抽取的
名學生中至少有一人得分在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪70元,每單抽成2元;乙公司無底薪,40單以內(含40單)的部分每單抽成4元,超出40單的部分每單抽成6元.假設同一公司的送餐員一天的送餐單數相同,現從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數,得到如下頻數表:
甲公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 10 | 20 | 20 | 40 | 10 |
(1)現從甲公司記錄的這100天中隨機抽取兩天,求這兩天送餐單數都大于40的概率;
(2)若將頻率視為概率,回答以下問題:
(i)記乙公司送餐員日工資為(單位:元),求
的分布列和數學期望;
(ii)小明擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三個元素,分別作為一個三位數的個位數,十位數和百位數,記這個三位數為a,現將組成a的三個數字按從小到大排成的三位數記為I(a),按從大到小排成的三位數記為D(a)(例如a=219,則I(a)=129,D(a)=921),閱讀如圖所示的程序框圖,運行相應的程序,任意輸入一個a,則輸出b的值為( )
A. 792 B. 693 C. 594 D. 495
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F為拋物線C:y2=2px(P>0)的焦點,過F垂直于x軸的直線被C截得的弦的長度為4.
(1)求拋物線C的方程.
(2)過點(m,0),且斜率為1的直線被拋物線C截得的弦為AB,若點F在以AB為直徑的圓內,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】噪聲污染已經成為影響人們身體健康和生活質量的嚴重問題,為了了解聲音強度(單位:分貝)與聲音能量
(單位:
)之間的關系,將測量得到的聲音強度
和聲音能量
(
,2,…,10)數據作了初步處理,得到如圖散點圖及一些統計量的值.
表中,
.
(1)根據散點圖判斷,與
哪一個適宜作為聲音強度
關于聲音能量
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據表中數據,求聲音強度關于聲音能量
的回歸方程;
(3)當聲音強度大于60分貝時屬于噪音,會產生噪音污染,城市中某點共受到兩個聲源的影響,這兩個聲源的聲音能量分別是
和
,且
.已知點
的聲音能量等于聲音能量
與
之和.請根據(1)中的回歸方程,判斷
點是否受到噪音污染的干擾,并說明理由.
附:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com