【題目】下列命題中,真命題是( )
A.x∈R,2x>x2
B.若a>b,c>d,則 a﹣c>b﹣d
C.x∈R,ex<0
D.ac2<bc2是a<b的充分不必要條件
科目:高中數學 來源: 題型:
【題目】某校期中考試后,按照學生的數學考試成績優秀和不優秀進行統計,得到如下列聯表:
優秀 | 不優秀 | 總計 | |
文科 | 60 | 140 | 200 |
理科 | 265 | 335 | 600 |
總計 | 325 | 475 | 800 |
(1)畫出列聯表的等高條形圖,并通過圖形判斷數學成績與文理分科是否有關;
(2)利用獨立性檢驗,分析文理分科對學生的數學成績是否有影響.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次中學生田徑運動會上,參加男子跳高的17名運動員的成績如下:
成績/m | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 | 1.85 | 1.90 |
人數 | 2 | 3 | 2 | 3 | 4 | 1 | 1 | 1 |
分別求這些運動員的成績的眾數、中位數、平均數(保留到小數點后兩位),并分析這些數據的含義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)是定義在R上的偶函數,且對任意的x∈R恒有f(x+1)=f(x﹣1),已知當x∈[0,1]時,f(x)=( )1﹣x , 則
①2是函數f(x)的一個周期;
②函數f(x)在(1,2)上是減函數,在(2,3)上是增函數;
③函數f(x)的最大值是1,最小值是0;
④x=1是函數f(x)的一個對稱軸;
⑤當x∈(3,4)時,f(x)=( )x﹣3 .
其中所有正確命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某個體服裝店經營某種服裝,該服裝店每天所獲利潤y(元)與每天售出這種服裝件數x之間的一組數據關系如下表:
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 74 | 81 | 89 | 90 | 91 |
(1)求利潤y與每天售出件數x之間的回歸方程 (回歸直線的斜率用分數表示).
(2)若該服裝店某天銷售服裝13件,估計可獲利潤多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=1﹣ ﹣lnx(a∈R).
(1)當a=1時,求函數f(x)的圖象在點( ,f(
))處的切線方程;
(2)當a≥0時,記函數Γ(x)= ax2+(1﹣2a)x+
﹣1+f(x),試求Γ(x)的單調遞減區間;
(3)設函數h(a)=3λa﹣2a2(其中λ為常數),若函數f(x)在區間(0,2)上不存在極值,求h(a)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,12月1日至12月5日的晝夜溫差與實驗室每天每100顆種子中的發芽數如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發芽數y(顆) | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這5組數據中選取2組,用剩下的3組數據求回歸方程,再用被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰的2組數據的概率.
(2)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求y關于x的線性回歸方程.
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分別是棱PA,CD的中點.
(1)求證:PC∥平面BMN;
(2)求證:平面BMN⊥平面PAC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com