【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數超過購機時購買的維修服務次數,則每維修一次需支付維修服務費用500元,無需支付小費.現需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數,得下面統計表:
維修次數 | 8 | 9 | 10 | 11 | 12 |
頻數 | 10 | 20 | 30 | 30 | 10 |
記表示1臺機器在三年使用期內的維修次數,
表示1臺機器在維修上所需的費用(單位:元),
表示購機的同時購買的維修服務次數.
(1)若,求
與
的函數解析式;
(2)若要求“維修次數不大于”的頻率不小于0.8,求
的最小值.
科目:高中數學 來源: 題型:
【題目】若三角形三邊長都是整數且至少有一個內角為,則稱該三角形為“完美三角形”.有關“完美三角形”有以下命題:
(1)存在直角三角形是“完美三角形”
(2)不存在面積是整數的“完美三角形”
(3)周長為12的“完美三角形”中面積最大為;
(4)若兩個“完美三角形”有兩邊對應相等,且它們面積相等,則這兩個“完美三角形”全等.
以上真命題有______.(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知從橢圓的一個焦點看兩短軸端點所成視角為
,且橢圓經過
.
(1)求橢圓的方程;
(2)是否存在實數,使直線
與橢圓有兩個不同交點
,且
(
為坐標原點),若存在,求出
的值.不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,給出下列四個結論:
① 函數的最小正周期是
;
② 函數在區間
上是減函數;
③ 函數的圖像關于點
對稱;
④ 函數的圖像可由函數
的圖像向右平移
個單位,再向下平移1個單位得到.其中正確結論的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為菱形,
,
為
的中點,
.
(1)求證:平面
;
(2)點在線段
上,
,試確定
的值,使
平面
;
(3)若平面
,平面
平面
,求二面角
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定點,
,直線
、
相交于點
,且它們的斜率之積為
,記動點
的軌跡為曲線
。
(1)求曲線的方程;
(2)過點的直線與曲線
交于
、
兩點,是否存在定點
,使得直線
與
斜率之積為定值,若存在,求出
坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com