精英家教網 > 高中數學 > 題目詳情
若f(x)滿足f(-x)=f(x),且在(-∞,-1]上是增函數,則( 。
A.f(-
3
2
)<f(-1)<f(2)
B.f(-1)<f(-
3
2
)<f(2)
C.f(2)<f(-1)<f(-
3
2
)
D.f(2)<f(-
3
2
)<f(-1)
∵f(-x)=f(x),∴f(2)=f(-2),
∵-2<-
3
2
<-1,又∵f(x)在(-∞,-1]上是增函數,
∴f(-2)<f(-
3
2
)<f(-1).
故選D.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若f(x)滿足f(-x)=f(x),且在(-∞,-1]上是增函數,則( 。
A、f(-
3
2
)<f(-1)<f(2)
B、f(-1)<f(-
3
2
)<f(2)
C、f(2)<f(-1)<f(-
3
2
)
D、f(2)<f(-
3
2
)<f(-1)

查看答案和解析>>

科目:高中數學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質量檢測數學試卷 (理科)(解析版) 題型:選擇題

已知定義域為R的函數f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數學 來源:2012-2013學年湖北省荊州中學高三(上)第一次質量檢測數學試卷 (文科)(解析版) 題型:選擇題

已知定義域為R的函數f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖南省湘西州古丈縣補習學校高三(上)第一次月考數學試卷(理科)(解析版) 題型:選擇題

已知定義域為R的函數f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视