【題目】設函數f(x)是定義在(﹣∞,0)上的可導函數,其導函數為f′(x),且有3f(x)+xf′(x)>0,則不等式(x+2015)3f(x+2015)+27f(﹣3)>0的解集( )
A.(﹣2018,﹣2015)
B.(﹣∞,﹣2016)
C.(﹣2016,﹣2015)
D.(﹣∞,﹣2012)
【答案】A
【解析】解:構造函數g(x)=x3f(x),g′(x)=x2(3f(x)+xf′(x)); ∵3f(x)+xf′(x)>0,x2>0;
∴g′(x)>0;
∴g(x)在(﹣∞,0)上單調遞增;
g(x+2015)=(x+2015)3f(x+2015),g(﹣3)=﹣27f(﹣3);
∴由不等式(x+2015)3f(x+2015)+27f(﹣3)>0得:
(x+2015)3f(x+2015)>﹣27f(﹣3);
∴g(x+2015)>g(﹣3);
∴x+2015>﹣3,且x+2015<0;
∴﹣2018<x<﹣2015;
∴原不等式的解集為(﹣2018,﹣2015).
故選A.
根據條件,構造函數g(x)=x3f(x),利用函數的單調性和導數之間的關系即可判斷出該函數在(﹣∞,0)上為增函數,然后將所求不等式轉化為對應函數值的關系,根據單調性得出自變量值的關系從而解出不等式即可.
科目:高中數學 來源: 題型:
【題目】已知a,b,c滿足c<b<a,且ac<0,那么下列關系式中一定成立的是 .
①ab>ac
②c(b﹣a)<0
③cb2<ab2
④ac(a﹣c)>0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+a|+|x+3|,g(x)=|x﹣1|+2.
(1)解不等式|g(x)|<3;
(2)若對任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于α∈R,下列等式中恒成立的是( )
A.cos(﹣α)=﹣cosα
B.sin(﹣α)=﹣sinα
C.sin(180°﹣α)=﹣sinα
D.cos(180°+α)=cosα
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知sin(θ+π)<0,cos(θ﹣π)>0,則下列不等關系中必定成立的是( )
A.sinθ<0,cosθ>0
B.sinθ>0,cosθ<0
C.sinθ>0,cosθ>0
D.sinθ<0,cosθ<0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f ( x)=2ax﹣a+3,若x0∈(﹣1,1),f ( x0 )=0,則實數 a 的取值范圍是( )
A.(﹣∞,﹣3)∪(1,+∞)
B.(﹣∞,﹣3)
C.(﹣3,1)
D.(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.類比推理是由特殊到一般的推理
B.演繹推理是特殊到一般的推理
C.歸納推理是個別到一般的推理
D.合情推理可以作為證明的步驟
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com