精英家教網 > 高中數學 > 題目詳情

【題目】過曲線C1 =1(a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設切點為M,延長F1M交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為(
A.
B. ﹣1
C. +1
D.

【答案】D
【解析】解:設雙曲線的右焦點為F2,則F2的坐標為(c,0)

因為曲線C1與C3有一個共同的焦點,所以y2=4cx

因為O為F1F2的中點,M為F1N的中點,所以OM為△NF1F2的中位線,

所以OM∥NF2,

因為|OM|=a,所以|NF2|=2a

又NF2⊥NF1,|FF2|=2c 所以|NF1|=2b

設N(x,y),則由拋物線的定義可得x+c=2a,

∴x=2a﹣c

過點F1作x軸的垂線,點N到該垂線的距離為2a

由勾股定理 y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2

得e2﹣e﹣1=0,

∴e=

故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數方程為 (t為參數,a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(Ⅰ)說明C1是哪一種曲線,并將C1的方程化為極坐標方程;
(Ⅱ)直線C3的極坐標方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).

(1)求甲、乙兩人成績的平均數和中位數;

(2)現要從甲、乙兩人中選派一人參加比賽,從統計學的角度,你認為派哪位學生參加比較合適?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學隨機選取了名男生,將他們的身高作為樣本進行統計,得到如圖所示的頻率分布直方圖,觀察圖中數據,完成下列問題.

)求的值及樣本中男生身高在(單位:)的人數.

)假設用一組中的每個數據可用該組區間的中點值代替,通過樣本估計該校全體男生的平均身高.

)在樣本中,從身高在(單位:)內的男生中任選兩人,求這兩人的身高都不低于的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設拋物線C:x2=2py(p>0)的焦點為F,準線為l,A∈C,已知以F為圓心,FA為半徑的圓F交l于B,D兩點;
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F三點在同一直線m上,直線n與m平行,且n與C只有一個公共點,求坐標原點到m,n距離的比值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某位同學進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(°C)與該小賣部的這種飲料銷量y(杯),得到如下數據:

1月11日

1月12日

1月13日

1月14日

1月15日

平均氣溫x(°C)

9

10

12

11

8

銷量y(杯)

23

25

30

26

21

(Ⅰ)若先從這五組數據中抽出2組,求抽出的2組數據恰好是相鄰2天數據的概率;
(Ⅱ)請根據所給五組數據,求出y關于x的線性回歸方程 = x+ ;
(Ⅲ)根據(Ⅱ)中所得的線性回歸方程,若天氣預報1月16日的白天平均氣溫7(°C),請預測該奶茶店這種飲料的銷量.
(參考公式: = =

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數f(x)是定義在R上的偶函數,f(x+1)為奇函數,f(0)=0,當x∈(0,1]時,f(x)=log2x,則在區間(8,9)內滿足方f(x)程f(x)+2=f( )的實數x為 (
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線l的參數方程為 ,(t為參數,0<θ<π),曲線C的極坐標方程為ρsin2θ﹣2cosθ=0.
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A,B兩點,當θ變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若(x+ n的展開式中各項的系數之和為81,且常數項為a,則直線y= x與曲線y=x2所圍成的封閉區域面積為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视