精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<數學公式)的圖象如圖:將函數y=f(x)(x∈R)的圖象向左平移數學公式個單位,得函數y=g(x)的圖象(g′(x)為g(x)的導函數),下面結論正確的是


  1. A.
    函數g(x)是奇函數
  2. B.
    函數g′(x)在區間(-數學公式,0)上是減函數
  3. C.
    g(x)•g′(x)的最小值為-3
  4. D.
    函數g(x)的圖象關于點(數學公式,0)對稱
D
分析:根據所給圖象求出f(x)的解析式,通過平移求出g(x),進而求出g′(x),然后根據選項逐個檢驗即可.
解答:由圖象知,A=1,函數f(x)的周期T=2(-)=
=,得ω=3,
由五點法作圖知:3×+φ=,解得φ=-,
所以f(x)=sin(3x-),
g(x)=f(x+)=sin[3(x+)-]=sin(3x+)=cos3x,
g′(x)=-3sin3x,
因為g(-x)=cos(-3x)=cos3x=g(x),所以g(x)為偶函數,排除A;
g′(x)=-3sin3x在(-,0)上不單調,故排除B;
g(x)•g′(x)=cos3x•(-3sin3x)=-sin6x,最小值為-,故排除C;
由3x=kπ+,得x=+,k∈Z,則g(x)=cos3x的對稱中心為(+,0)k∈Z,
當k=0時,對稱中心為(,0),
故選D.
點評:本題考查函數y=sin(ωx+φ)的圖象變換,考查三角函數的單調性、奇偶性,考查學生綜合運用所學知識解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视