【題目】在直角坐標系中,已知點
,
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求的普通方程和
的直角坐標方程;
(2)設曲線與曲線
相交于
,
兩點,求
的值.
科目:高中數學 來源: 題型:
【題目】2019冠狀病毒。CoronaVirus Disease2019(COVID-19))是由新型冠狀病毒(2019-nCoV)引發的疾病,目前全球感染者以百萬計,我國在黨中央、國務院、中央軍委的堅強領導下,已經率先控制住疫情,但目前疫情防控形勢依然嚴峻,湖北省中小學依然延期開學,所有學生按照停課不停學的要求,居家學習.小李同學在居家學習期間,從網上購買了一套高考數學沖刺模擬試卷,快遞員計劃在下午4:00~5:00之間送貨到小區門口的快遞柜中,小李同學父親參加防疫志愿服務,按規定,他換班回家的時間在下午4:30~5:00,則小李父親收到試卷無需等待的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某大型廠區有三個值班室,值班室
在值班室
的正北方向
千米處,值班室
在值班室
的正東方向
千米處.
(1)保安甲沿從值班室
出發行至點
處,此時
,求
的距離;
(2)保安甲沿從值班室
出發前往值班室
,保安乙沿
從值班室
出發前往值班室
,甲乙同時出發,甲的速度為
千米/小時,乙的速度為
千米/小時,若甲乙兩人通過對講機聯系,對講機在廠區內的最大通話距離為
千米(含
千米),試問有多長時間兩人不能通話?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當四面體C﹣EMN的體積取得最大值
時,三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在邊長為2的等邊中,
分別為邊
的中點,將AED沿
折起,使得
,
,得到如圖2的四棱錐A-BCDE,連結
,且
與
交于點
.
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自由購是通過自助結算方式購物的一種形式. 某大型超市為調查顧客使用自由購的情況,隨機抽取了100人,統計結果整理如下:
20以下 | 70以上 | ||||||
使用人數 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現隨機抽取 1 名顧客,試估計該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機抽取3人進一步了解情況,用
表示這3人中年齡在
的人數,求隨機變量
的分布列及數學期望;
(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環保購物袋.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代勞動人民在筑城、筑堤、挖溝、挖渠、建倉、建囤等工程中,積累了豐富的經驗,總結出了一套有關體積、容積計算的方法,這些方法以實際問題的形式被收入我國古代數學名著《九章算術》中.《九章算術》將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,如圖所示的陽馬三視圖,則它的體積為( )
A.B.1C.2D.3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com