精英家教網 > 高中數學 > 題目詳情

已知,,直線與函數、的圖象都相切,且與函數的圖象的切點的橫坐標為.
(Ⅰ)求直線的方程及的值;
(Ⅱ)若(其中的導函數),求函數的最大值;
(Ⅲ)當時,求證:.

(Ⅰ)直線的方程為. .
(Ⅱ)當時,取最大值,其最大值為2.
(Ⅲ)

解析試題分析:(Ⅰ),.∴直線的斜率為,且與函數的圖象的切點坐標為.  ∴直線的方程為. 又∵直線與函數的圖象相切,
∴方程組有一解. 由上述方程消去,并整理得
        ①
依題意,方程①有兩個相等的實數根,
解之,得      .
(Ⅱ)由(Ⅰ)可知, 
 .  .
∴當時,,當時,.
∴當時,取最大值,其最大值為2.
(Ⅲ) .
,  , .
由(Ⅱ)知當時,  ∴當時,,
.     ∴
考點:導數的幾何意義,直線方程,利用導數研究函數的極值(最值),不等式證明問題。
點評:典型題,切線的斜率,等于在切點的導函數值。利用導數研究函數的極值,一般遵循“求導數、求駐點、研究導數的正負、確定極值”,利用“表解法”,清晰易懂。不等式的證明問題,往往通過構造函數,通過研究函數的最值達到目的。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數的圖象在點處的切線斜率為
(Ⅰ)求實數的值;
(Ⅱ)判斷方程根的個數,證明你的結論;
(Ⅲ)探究:是否存在這樣的點,使得曲線在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側?若存在,求出點A的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若,試確定函數的單調區間;
(Ⅱ)若,且對于任意,恒成立,試確定實數的取值范圍;
(Ⅲ)設函數,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(e為自然對數的底數).
(1)求函數的單調增區間;
(2)設關于x的不等式的解集為M,且集合,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數時都取得極值
(1)求的值與函數的單調區間
(2)若對,不等式恒成立,求c的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數在(1,2)上是增函數,在(0,1)上是減函數。
的值;
時,若內恒成立,求實數的取值范圍;
求證:方程內有唯一解.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調區間;
(2)當時,判斷的大小,并說明理由;
(3)求證:當時,關于的方程:在區間上總有兩個不同的解.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求曲線在點處的切線方程;
(2)對任意在區間上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數。
(1)求函數的單調遞減區間;
(2)求切于點的切線方程;
(3)求函數上的最大值與最小值。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视