精英家教網 > 高中數學 > 題目詳情

若函數(e為自然對數的底數)=(   )

(A)0       (B)1         (C)2       (D)

 

【答案】

C

【解析】

試題分析:因為e>1,所以,所以選C.

考點:分段函數

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若存在實常數k和b,使得函數f(x)和g(x)對其定義域上的任意實數x分別滿足:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx(e為自然對數的底數).
(1)求F(x)=h(x)-φ(x)的極值;
(2)函數h(x)和φ(x)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

若存在實數k,b,使得函數f(x)和g(x)對其定義域上的任意實數x同時滿足:f(x)≥kx+b且g(x)≤kx+b,則稱直線:l:y=kx+b為函數f(x)和g(x)的“隔離直線”.已知f(x)=x2,g(x)=2elnx(其中e為自然對數的底數).試問:
(1)函數f(x)和g(x)的圖象是否存在公共點,若存在,求出交點坐標,若不存在,說明理由;
(2)函數f(x)和g(x)是否存在“隔離直線”?若存在,求出此“隔離直線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•綿陽二模)對于具有相同定義域D的函數f(x)和g(x),若對任意的x∈D,都有|f(x)-g(x)|≤1,則稱f(x)和g(x)在D上是“密切函數”.給出定義域均為D={x|0≤x≤4}的四組函數如下:
①f(x)=ln(x+1),g(x)=
2x
x+2
;   ②f(x)=x3,g(x)=3x-1;
③f(x)=ex-2x(其中e為自然對數的底數),g(x)=2-x;④f(x)=
2
3
x-
5
8
,g(x)=
x

其中,函數f(x)和g(x)在D上為“密切函數”的是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

若存在實常數k和b,使得函數F(x)和G(x)對其公共定義域上的任意實數x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”.已知函數h(x)=x2,m(x)=2elnx(e為自然對數的底數),φ(x)=x-2,d(x)=-1.
有下列命題:
①f(x)=h(x)-m(x)在x∈(0,
e
)
遞減;
②h(x)和d(x)存在唯一的“隔離直線”;
③h(x)和φ(x)存在“隔離直線”y=kx+b,且b的最大值為-
1
4
;
④函數h(x)和m(x)存在唯一的隔離直線y=2
e
x-e

其中真命題的個數(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數h(x)=x2,φ(x)=2elnx(e為自然對數的底).
(1)求函數F(x)=h(x)-φ(x)的極值;
(2)若存在常數k和b,使得函數f(x)和g(x)對其定義域內的任意實數x分別滿足f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為函數f(x)和g(x)的“隔離直線”.試問:函數h(x)和φ(x)是否存在“隔離直線”?若存在,求出“隔離直線”方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视