精英家教網 > 高中數學 > 題目詳情
數列an+1=|an-4|+2(n∈N*),如果{an}是一個等差數列,則a1=
 
分析:根據數列{an}是一個等差數列,設出等差數列的公差,由條件an+1=|an-4|+2(n∈N*),建立方程關系即可求出結論.
解答:解:若{an}是等差數列,設公差為 d,
∵an+1=|an-4|+2(n∈N*),
∴a1+nd=|a1+(n-1)d-4|+2,
化簡得 nd+(a1-2)=|nd+(a1-2)+(-d-2)|,
上式對任意正整數 n 恒成立,因此
①若d=0,則 a1=3;
②如d<0,不可能,∵當 n 趨于無窮時,左邊為負數;
③如d>0,則-d-2=0,
解得d=-2<0,矛盾,
∴當且僅當 a1=3 時,數列{an}是等差數列.
故答案為:3.
點評:本題主要考查等差數列的應用,根據條件建立方程是解決本題的關鍵,注意要對d進行討論.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

4、給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年北京市海淀區高三(上)期末數學試卷(理科)(解析版) 題型:解答題

給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年高考模擬數學專題:壓軸大題(解析版) 題型:解答題

給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數學 來源:2010年高考數學專項復習:創新題(2)(解析版) 題型:解答題

給定項數為m(m∈N*,m≥3)的數列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數k(2≤k≤m-1),若數列{an}中存在連續的k項和該數列中另一個連續的k項恰好按次序對應相等,則稱數列{an}是“k階可重復數列”,例如數列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序對應相等,所以數列{an}是“4階可重復數列”.
(Ⅰ)分別判斷下列數列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數列”?如果是,請寫出重復的這5項;
(Ⅱ)若數為m的數列{an}一定是“3階可重復數列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數列{an}不是“5階可重復數列”,若在其最后一項am后再添加一項0或1,均可使新數列是“5階可重復數列”,且a4=1,求數列{an}的最后一項am的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视