【題目】已知定義在[﹣ ,
]的函數f(x)=sinx(cosx+1)﹣ax,若y=f(x)僅有一個零點,則實數a的取值范圍是( )
A.( ,2]
B.(﹣∞, )∪[2,+∞)
C.[﹣ ,
)
D.(﹣∞,﹣ ]∪(
,+∞)
【答案】B
【解析】解:令g(x)=sinx(cosx+1),
則g′(x)=(2cosx﹣1)(cosx+1),
當x∈[﹣ ,﹣
)時,g′(x)<0,g(x)為減函數,
當x∈(﹣ ,
)時,g′(x)>0,g(x)為增函數,
當x∈( ,
]時,g′(x)<0,g(x)為減函數,
故g(x)=sinx(cosx+1)的圖象如下圖所示:
當x=± 時,g(x)=±1,此時a=
,
當x=0時,g′(x)=2,
若y=f(x)僅有一個零點,
則函數g(x)=sinx(cosx+1)的圖象與y=ax的圖象有且僅有一個交點,
由圖可得:a∈(﹣∞, )∪[2,+∞),
故選:B
【考點精析】認真審題,首先需要了解利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減).
科目:高中數學 來源: 題型:
【題目】從2013年開始,國家教育部要求高中階段每學年都要組織學生進行學生體質健康測試,方案要求以學校為單位組織實施,某校對高一(1)班學生根據《國家學生體質健康標準》的測試項目按百分制進行了預備測試,并對50分以上的成績進行統計,其頻率分布直方圖如圖.所示,已知[90,100]分數段的人數為2.
(1)求[70,80)分數段的人數;
(2)現根據預備測試成績從成績在80分以上(含80分)的學生中任意選出2人代表班級參加學校舉行的一項體育比賽,求這2人的成績一個在[80,90)分數段、一個在[90,100]分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx,g(x)= .
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區間(1,2)內零點個數并說明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內的零點為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個不等實根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對應的證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期為π,給出下列四個命題:
①f(x)的最大值為3;
②將f(x)的圖象向左平移 后所得的函數是偶函數;
③f(x)在區間[﹣ ,
]上單調遞增;
④f(x)的圖象關于直線x= 對稱.
其中正確說法的序號是( )
A.②③
B.①④
C.①②④
D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ2﹣4ρsinθ+3=0,A、B兩點極坐標分別為(1,π)、(1,0).
(1)求曲線C的參數方程;
(2)在曲線C上取一點P,求|AP|2+|BP|2的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由 算得,
.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
B.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”
C.有99%以上的把握認為“愛好該項運動與性別有關”
D.有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com