(本題滿分15分)
已知,且
(
為自然對數的底數)。
(1)求與
的關系;
(2)若在其定義域內為增函數,求
的取值范圍;
(3)證明:
(提示:需要時可利用恒等式:)
解:(1)由題意
(2)由(1)知:(x>0)
令h(x)=x2-2x+
.要使g(x)在(0,+∞)為增函數,只需h(x)在(0,+∞)滿足:
h(x)≥0恒成立.
即x2-2x+
≥0
上恒成立[來源:ZXXK][來源:學,科,網Z,X,X,K]
又
所以
(3)證明:證:lnx-x+1≤0 (x>0),
設.
當x∈(0,1)時,k′(x)>0,∴k(x)為單調遞增函數;
當x∈(1,∞)時,k′(x)<0,∴k(x)為單調遞減函數;
∴x=1為k(x)的極大值點,
∴k(x)≤k(1)=0.
即lnx-x+1≤0,∴lnx≤x-1.
②由①知lnx≤x-1,又x>0,
【解析】略
科目:高中數學 來源:2010-2011年江蘇省如皋市五校高二下學期期中考試理科數學 題型:解答題
((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機會,每次抽獎的方法是在已經設置并打開了程序的電腦上按“Enter”鍵,電腦將隨機產生一個 1~6的整數數作為號碼,若該號碼是3的倍數則顧客獲獎,每次中獎的獎金為100元,運用所學的知識說明這樣的活動對商家是否有利。
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省招生適應性考試文科數學試卷(解析版) 題型:解答題
(本題滿分15分)設函數.
(Ⅰ)若函數在
上單調遞增,在
上單調遞減,求實數
的最大值;
(Ⅱ)若對任意的
,
都成立,求實數
的取值范圍.
注:為自然對數的底數.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省溫州市十校聯合體高三上學期期初摸底文科數學 題型:解答題
(本題滿分15分)已知直線與曲線
相切
1)求b的值;
2)若方程在
上恰有兩個不等的實數根
,求
①m的取值范圍;
②比較的大小
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省溫州市十校聯合體高三上學期期中考試文科數學 題型:解答題
(本題滿分15分)已知拋物線:
(
),焦點為
,直線
交拋物線
于
、
兩點,
是線段
的中點,
過作
軸的垂線交拋物線
于點
,
(1)若拋物線上有一點
到焦點
的距離為
,求此時
的值;
(2)是否存在實數,使
是以
為直角頂點的直角三角形?若存在,求出
的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省六校高三第一次聯考文科數學 題型:解答題
(本題滿分15分)
已知函數
(1)求的單調區間;
(2)設,若
在
上不單調且僅在
處取得最大值,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com