【題目】已知函數f(x)=ax3+bx2 , 在x=1處有極大值3,則f(x)的極小值為( )
A.0
B.1
C.2
D.﹣3
科目:高中數學 來源: 題型:
【題目】某地4個蔬菜大棚頂部,陽光照在一棵棵茁壯生長的蔬菜上.這些采用水培、無土栽培方式種植的各類蔬菜,成為該地區居民爭相購買的對象.過去50周的資料顯示,該地周光照量(小時)都在30以上.其中不足50的周數大約有5周,不低于50且不超過70的周數大約有35周,超過70的大約有10周.根據統計某種改良黃瓜每個蔬菜大棚增加量
(百斤)與每個蔬菜大棚使用農夫1號液體肥料
(千克)之間對應數據為如圖所示的折線圖:
(Ⅰ)依據數據的折線圖,用最小二乘法求出關于
的線性回歸方程
;并根據所求線性回歸方程,估計如果每個蔬菜大棚使用農夫1號肥料10千克,則這種改良黃瓜每個蔬菜大棚增加量
是多少斤?
(Ⅱ)因蔬菜大棚對光照要求較大,某光照控制儀商家為應對惡劣天氣對光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運行,但每周光照控制儀最多可運行臺數受周光照量限制,并有如下關系:
周光照量 | |||
光照控制儀最多可運行臺數 | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為5000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損800元,欲使商家周總利潤的均值達到最大,應安裝光照控制儀多少臺?
附:回歸方程系數公式: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
(1)函數y=tanx在定義域內單調遞增;
(2)若α,β是銳角△ABC的內角,則sinα>cosβ;
(3)函數y=cos( x+
)的對稱軸x=
+kπ,k∈Z;
(4)函數y=sin2x的圖象向左平移 個單位,得到y=sin(2x+
)的圖象.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為D的函數y=f(x),若同時滿足下列條件:
①f(x)在D內單調遞增或單調遞減;
②存在區間[a,b]D,使f(x)在[a,b]上的值域為[a,b],則把y=f(x),x∈D叫閉函數.
(1)求閉函數y=x3符合條件②的區間[a,b];
(2)判斷函數f(x)= x+
,(x>0)是否為閉函數?并說明理由;
(3)已知[a,b]是正整數,且定義在(1,m)的函數y=k﹣ 是閉函數,求正整數m的最小值,及此時實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】佛山某中學高三(1)班排球隊和籃球隊各有10名同學,現測得排球隊10人的身高(單位:cm)分別是:162、170、171、182、163、158、179、168、183、168,籃球隊10人的身高(單位:cm)分別是:170、159、162、173、181、165、176、168、178、179.
(1)請把兩隊身高數據記錄在如圖所示的莖葉圖中,并指出哪個隊的身高數據方差較小(無需計算);
(2)現從兩隊所有身高超過178cm的同學中隨機抽取三名同學,則恰好兩人來自排球隊一人來自籃球隊的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線 的參數方程為
(
為參數),在同一平面直角坐標系中,將曲線
上的點按坐標變換
得到曲線
.
(1)求曲線 的普通方程;
(2)若點 在曲線
上,點
,當點
在曲線
上運動時,求
中點
的軌跡方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com