精英家教網 > 高中數學 > 題目詳情

已知數列的前n項和為,點在直線上.數列{bn}滿足,前9項和為153.
(Ⅰ)求數列、的通項公式;
(Ⅱ)設,數列的前n和為,求使不等式對一切都成立的最大正整數k的值.

(1) , bn=b3+3(n﹣3)=3n+2;
(2)

解析試題分析:解:(1)∵點在直線上,
∴Sn=∴n≥2時,an=Sn﹣Sn﹣1=n+5,
n=1時,a1=6也符合
∴an=n+5;∵bn+2﹣2bn+1+bn=0,∴bn+2﹣bn+1=bn+1﹣bn,
∴數列{bn}是等差數列∵其前9項和為153.
∴b5=17∵b3=11,∴公差d==3
∴bn=b3+3(n﹣3)=3n+2;
(2)=
∴Tn=(1﹣++…+)==
解得
考點:等差數列和數列的求和
點評:主要是考查了等差數列和裂項法求和的運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

正項數列{an}的前n項和Sn滿足:-(n2n-1)Sn-(n2n)=0.
(1)求數列{an}的通項公式an;
(2)令bn,數列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn< .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,數列滿足,,),令,
⑴求證: 是等比數列;
⑵求數列的通項公式;
⑶若,求的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的各項均為正數,其前項和為,且.
⑴求證:數列是等差數列;
⑵設,求證:
⑶設,求.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為數列的前項和,且
(Ⅰ)求數列的通項公式;
(Ⅱ)若,求數列的前n項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列中,
(1)試判斷數列是否為等差數列;
(2)設滿足,求數列的前n項和
(3)若,對任意n ≥2的整數恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知{an}是公差不為零的等差數列,a1=1,且a1,a3,a9成等比數列.
(Ⅰ)求數列{an}的通項;    (Ⅱ)求數列{}的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列{an}中,a1=1,當n≥2時,其前n項和Sn滿足.
(1)求Sn的表達式;
(2)設bn,求{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)設數列滿足:。
(1)求
(2)令,求數列的通項公式;

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视