精英家教網 > 高中數學 > 題目詳情
直三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=A1A=1,D1是A1B1上一動點(可以與A1或B1重合),過D1和C1C的平面與AB交于D.
(Ⅰ)證明BC∥平面AB1C1;
(Ⅱ)若D1為A1B1的中點,求三棱錐B1-C1AD1的體積

【答案】分析:(Ⅰ)直三棱柱ABC-A1B1C1中,由∠ACB=120°,AC=CB=A1A=1,知CB∥C1B1,由此能夠證明CB∥平面A B1C1
(Ⅱ)直三棱柱ABC-A1B1C1中,由D1為A1B1的中點,AC=CB=A1A=1,C1D1⊥A1B1,CC1⊥A1B1,故A1B1⊥平面CDD1C1,所以C1D⊥A1B1.故=,由此能求出三棱錐B1-C1AD1的體積
解答:(Ⅰ)證明:∵直三棱柱ABC-A1B1C1中,∠ACB=120°,
AC=CB=A1A=1,
∴CB∥C1B1,
又C1B1?平面A B1C1
CB?平面A B1C1,
所以CB∥平面A B1C1
(Ⅱ)解:直三棱柱ABC-A1B1C1中,
∵D1為A1B1的中點,AC=CB=A1A=1,
∴C1D1⊥A1B1,CC1⊥A1B1
∴A1B1⊥平面CDD1C1,
∵C1D?平面CDD1C1,∴C1D⊥A1B1
∵∠ACB=120°,AC=CB=A1A=1,
∴D1B1=A1B1==,
C1D1=C1B1=
=
=×C1D1×(×A1A×D1B1
=××(×1×)=
故三棱錐B1-C1AD1的體積為
點評:本題考查直線與平面平行的證明,考查三棱錐的體積的求法.解題時要認真審題,仔細解答,注意合理地化空間問題為平面問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求證:平面AB1C⊥平面B1CB;    
(2)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直線B1C與平面ABC成30°角.
(1)求證:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距離;   
(3)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是


  1. A.
    數學公式
  2. B.
    數學公式
  3. C.
    數學公式
  4. D.
    數學公式

查看答案和解析>>

科目:高中數學 來源:2011-2012學年重慶八中高三(下)第二次月考數學試卷(理科)(解析版) 題型:選擇題

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视