【題目】種子發芽率與晝夜溫差有關.某研究性學習小組對此進行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發芽數,如下表:
(I)從3月12日至3月16日中任選2天,記發芽的種子數分別為c,d,求事件“c,d均不小于25”的概率;
(II)請根據3月13日至3月15日的三組數據,求出y關于x的線性回歸方程;
(III)若由線性回歸方程得到的估計數據與實際數據誤差均不超過2顆,則認為回歸方程是可靠的,試用3月12日與16日的兩組數據檢驗,(II)中的回歸方程是否可靠?
【答案】(1) ;(2)
;(3)詳見解析.
【解析】試題分析:(1)由列舉法得出從5天中任選2天的基本事件, 選出的二天種子發芽數均不小于25的基本事件,根據古典概型得出概率;(2)先求出平均數和代入公式,求出線性回歸方程;(3)將
和
代入方程,與(II)中的回歸方程進行比較,得出結論.
試題解析:(Ⅰ)從5天中任選2天,共有10個基本事件:(12日,13日),(12日,14日),(12日,15日),
(12日,16日),(13日,14日),(13日,15日),(13日,16日),(14日,15日),(14日,16日),(15日,16日).
選出的二天種子發芽數均不小于25共有3個基本事件:(13日,14日),(13日,15日),(14日,15日).
∴事件“均不小于25”的概率為
.
(Ⅱ).
5.
=2.
∴.
∴關于
的線性回歸方程為
.
(Ⅲ)當時,
.
當時,
.
∴回歸方程是可靠的.
點睛:具有以下兩個特點的概率模型稱為古典概率模型,簡稱古典概型:(1)試驗中所有可能出現的基本事件只有有限個.(2)每個基本事件出現的可能性相等.如果一次試驗中可能出現的結果有n個,而且所有結果出現的可能性都相等,那么每一個基本事件的概率都是;如果某個事件A包括的結果有m個,那么事件A的概率P(A)=
.
科目:高中數學 來源: 題型:
【題目】函數f(x)的定義域為{x|x≠0},且滿足對于定義域內任意的x1 , x2都有等式f(x1x2)=f(x1)+f(x2)成立.
(1)求f(1)的值.
(2)判斷f(x)的奇偶性并證明.
(3)若f(4)=1,且f(x)在(0,+∞)上是增函數,解關于x的不等式f(3x+1)+f(﹣6)≤3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省高考改革新方案,不分文理科,高考成績實行“”的構成模式,第一個“3”是語文、數學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體
,從學生群體
中隨機抽取了50名學生進行調查,他們選考物理,化學,生物的科目數及人數統計如下表:
(I)從所調查的50名學生中任選2名,求他們選考物理、化學、生物科目數量不相等的概率;
(II)從所調查的50名學生中任選2名,記表示這2名學生選考物理、化學、生物的科目數量之差的絕對值,求隨機變量
的分布列和數學期望;
(III)將頻率視為概率,現從學生群體中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數記作
,求事件“
”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的圖象與y軸的交點為(
),它在y軸右側的第一個最高點和最低點分別為(x0 , 3),(x0+2π,﹣3).
(1)求函數y=f(x)的解析式;
(2)該函數的圖象可由y=sinx(x∈R)的圖象經過怎樣的平移和伸縮變換得到?
(3)求這個函數的單調遞增區間和對稱中心.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的偶函數f(x)滿足f(x+1)= ,且f(x)在[﹣3,﹣2]上是減函數,若α,β是銳角三角形的兩個內角,則( )
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
為平行四邊形,
,
,
,
點在底面
內的射影
在線段
上,且
,
,M在線段
上,且
.
(Ⅰ)證明: 平面
;
(Ⅱ)在線段AD上確定一點F,使得平面平面PAB,并求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是首項為a1= ,公比q=
的等比數列,設bn+2=3
an(n∈N*),數列{cn}滿足cn=anbn .
(1)求證:{bn}是等差數列;
(2)求數列{cn}的前n項和Sn;
(3)若cn≤ m2+m﹣1對一切正整數n恒成立,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com