【題目】經市場調查,某商品在過去的100天內的銷售量(單位:件)和價格(單位:元)均為時間 (單位:天)的函數,且銷售量滿足
=
,價格滿足
=
.
(1)求該種商品的日銷售額與時間
的函數關系;
(2)若銷售額超過16610元,商家認為該商品的收益達到理想程度,請判斷該商品在哪幾天的收益達到理想程度?
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB ,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F 分別為AC,BP中點.
(1)求證:EF∥平面PCD;
(2)求直線DP與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐P﹣ABC中,AC⊥BC,AC=BC=2,PA=PB=PC=3,O是AB中點,E是PB中點.
(1)證明:平面PAB⊥平面ABC;
(2)求點B到平面OEC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)任意向軸上
這一區間內投擲一個點,則該點落在區間
內的概率是多少?
(2)已知向量,
,若
,
分別表示一枚質地均勻的正方體骰子(六個面的點數分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現的點數,求滿足
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了鼓勵市民節約用電,某市實行“階梯式”電價,將每戶居民的月用電量分為二檔,月用電量不超過200度的部分按0.5元/度收費,超過200度的部分按0.8元/度收費.某小區共有居民1000戶,為了解居民的用電情況,通過抽樣,獲得了今年7月份100戶居民每戶的用電量,統計分析后得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)試估計該小區今年7月份用電量用不超過260元的戶數;
(3)估計7月份該市居民用戶的平均用電費用(同一組中的數據用該組區間的中點值作代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
為自然對數的底數.
(1)若函數在區間
上是單調函數,試求實數
的取值范圍;
(2)已知函數,且
,若函數
在區間
上恰有3個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一段“三段論”,其推理是這樣的:對于可導函數,若
,則
是函數
的極值點,因為函數
滿足
,所以
是函數
的極值點”,結論以上推理
A. 大前提錯誤B. 小前提錯誤C. 推理形式錯誤D. 沒有錯誤
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com