【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結束.除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是
.假設各局比賽結果相互獨立.
(1)分別求甲隊以3:0,3:1,3:2獲勝的概率;
(2)若比賽結果為3:0或3:1,則勝利方得3分、對方得0分;若比賽結果為3:2,則勝利方得2分、對方得1分.求甲隊得分X的分布列及數學期望.
【答案】(1),
,
;(2)詳見解析;
【解析】試題分析:(1)甲隊獲勝有三種情形: ,
,
,其每種情形的最后一局肯定是甲隊獲勝,粉筆求出相應的概率,即可得到結果;(2)
的取值可能為
,然后利用相互獨立事件的概率乘法公式求解相應的概率,列出分布列,最后根據期望的公式即可求解數學期望.
試題解析:(1)記“甲隊以3∶0勝利”為事件A1,“甲隊以3∶1勝利”為事件A2,
“甲隊以3∶2勝利”為事件A3,
由題意知,各局比賽結果相互獨立,
故P(A1)=,
P(A2)=,
P(A3)=.
所以甲隊以3∶0勝利、以3∶1勝利的概率都為,以3∶2勝利的概率為
.
(2)設“乙隊以3∶2勝利”為事件A4,
由題意知,各局比賽結果相互獨立,
所以P(A4)=.
由題意知,隨機變量X的所有可能的取值為0,1,2,3,
根據事件的互斥性得
P(X=0)=P(A1+A2)=P(A1)+P(A2)=.
又P(X=1)=P(A3)=,
P(X=2)=P(A4)=,
P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=,
故X的分布列為
所以E(X)=0×+1×
+2×
+3×
=
.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側面
是正三角形,且與底面
垂直,底面
是邊長為2的菱形,
是
的中點,過
三點的平面交
于
,
為
的中點,求證:
(1)平面
;
(2)平面
;
(3)平面平面
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+2ax+3-b(a≠0,b>0)在[0,3]上有最小值2,最大值17,函數g(x)=.
(l)求函數g(x)的解析式;
(2)證明:對任意實數m,都有g(m2+2)≥g(2|m|+l);
(3)若方程g(|log2x-1|)+3k(-1)=0有四個不同的實數解,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)的周期為2,當x∈[0,2時,f(x)=2|x-1|-1,如果g(x)=f(x)-log3|x-2|,則函數y=g(x)的所有零點之和為( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sin θ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,{bn}是等比數列,且b2=3,b3=9,a1=b1 , a14=b4 .
(1)求{an}的通項公式;
(2)設cn=an+bn , 求數列{cn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面
為菱形,
,側面
是邊長為
的正三角形,側面
底面
.
()設
的中點為
,求證:
平面
.
()求斜線
與平面
所成角的正弦值.
()在側棱
上存在一點
,使得二面角
的大小為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,且當x≤0時,f(x)=x2+2x.
(1)現已畫出函數f(x)在y軸左側的圖象,如圖所示,請補全函數f(x)的圖象;
(2)求出函數f(x)(x>0)的解析式;
(3)若方程f(x)=a恰有3個不同的解,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com