【答案】
分析:(I)證明AB垂直平面AA
1C
1C內的兩條相交直線AA
1,AC,即可證明結論;
(II)只需證明C
1C垂直平面ABC
1內的兩條相交直線AB,BC
1,即可證明直線與平面垂直;
(III)連接A
1B,說明AC與BC
1所成的角是∠BC
1A
1(或它的補角)通過證明三角形A
1C
1B是直角三角形,即可求解AC與BC
1所成的角.
解答:
解:(I)∵側棱AA
1⊥平面ABC,
AB?平面ABC,∴AA
1⊥AB,
又∵∠BAC=90°∴AB⊥AC,
AA
1∩AC=A,
從而AB⊥平面AA
1C
1C…(4分)
(II)由(I)可知AB⊥平面AA
1C
1C,C
1C?平面AA
1C
1C,
∴C
1C⊥AB
又∵C
1C⊥BC
1并且AB∩BC
1=B,
∴C
1C⊥平面ABC
1…(8分)
(III)連接A
1B,∵AC∥A
1C
1∴AC與BC
1所成的角是∠BC
1A
1(或它的補角)
∵A
1C
1⊥A
1B
1,A
1C
1⊥A
1A,,A
1A∩A
1B
1=A
1,∴A
1C
1⊥平面A
1ABB
1
∵BA
1?平面A
1ABB
1∴A
1C
1⊥A
1B
在直角三角形A
1C
1B中,A
1C
1=a,C
1B=2a
∠BC
1A
1=60°
即 異面直線AC與BC
1所成的角為60°…(15分)
點評:本題是中檔題,考查直線與平面垂直的證明,直線與直線所成的角的判斷與求解,考查空間想象能力,計算能力.