【題目】已知數列{an}滿足an+1=2an﹣1(n∈N+),a1=2.
(1)求證:數列{an﹣1}為等比數列,并求數列{an}的通項公式;
(2)求數列{nan}的前n項和Sn(n∈N+).
【答案】
(1)證明:∵an+1=2an﹣1(n∈N+),
∴an+1﹣1=2(an﹣1)(n∈N+),
又∵a1﹣1=2﹣1=1,
∴數列{an﹣1}是首項為1、公比為2的等比數列,
∴an﹣1=12n﹣1=2n﹣1,
∴an=2n﹣1+1;
(2)解:∵an=2n﹣1+1,
∴nan=n2n﹣1+n,
設Tn=120+221+322+…+n2n﹣1,
∴2Tn=121+222+323+…+(n﹣1)2n﹣1+n2n,
兩式相減得:﹣Tn=(1+21+22+23+…+2n﹣1)﹣n2n
= ﹣n2n
=(1﹣n)2n﹣1,
∴Tn=(n﹣1)2n+1,
∴Sn=Tn+ =(n﹣1)2n+1+
【解析】(1)通過對an+1=2an﹣1(n∈N+)變形可知數列{an﹣1}是首項為1、公比為2的等比數列,進而可得結論;(2)通過an=2n﹣1+1可知nan=n2n﹣1+n,利用錯位相減法計算即得結論.
【考點精析】關于本題考查的等比數列的通項公式(及其變式)和數列的前n項和,需要了解通項公式:;數列{an}的前n項和sn與通項an的關系
才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知 ,
.
(1)當n=1,2,3時,分別比較f(n)與g(n)的大。ㄖ苯咏o出結論);
(2)由(1)猜想f(n)與g(n)的大小關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數f(x)=4sin(2x )(x∈R),有下列命題: ①y=f(x)的表達式可改寫為y=4cos(2x﹣
);
②y=f(x)是以2π為最小正周期的周期函數;
③y=f(x)的圖象關于點 對稱;
④y=f(x)的圖象關于直線x=﹣ 對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點分別為
,上、下頂點分別為
,兩個焦點分別為
,
,四邊形
的面積是四邊形
的面積的2倍.
(1)求橢圓的方程;
(2)過橢圓的右焦點且垂直于
軸的直線交橢圓
于
兩點,
是橢圓
上位于直線
兩側的兩點.若直線
過點
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】求橢圓的標準方程
(1)已知某橢圓的左右焦點分別為F1(﹣1,0),F2(1,0),且經過點P( ,
),求該橢圓的標準方程;
(2)已知某橢圓過點( ,﹣1),(﹣1,
),求該橢圓的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生在一門功課的22次考試中,所得分數莖葉圖如圖所示,則此學生該門功課考試分數的極差與中位數之和為( )
A.117
B.118
C.118.5
D.119.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求直線BE與平面PBD所成角的正弦值;
(Ⅲ)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com