(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M為PC上一點,PA=PD=2,BC=
AD=1,CD=
.
(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C為30°,設PM=MC,試確定
的值.
(本小題滿分12分)
證明:(Ⅰ)∵AD // BC,BC=AD,Q為AD的中點,
∴四邊形BCDQ為平行四邊形,∴CD // BQ . ………………… 2分
∵∠ADC=90° ∴∠AQB=90° 即QB⊥AD.
又∵平面PAD⊥平面ABCD
且平面PAD∩平面ABCD=AD, …………………… 4分
∴BQ⊥平面PAD. …………………… 5分
∵BQ平面PQB,
∴平面PQB⊥平面PAD. ………………… 6分
另證:AD // BC,BC=AD,Q為AD的中點,
∴ BC // DQ 且BC= DQ,
∴ 四邊形BCDQ為平行四邊形,∴CD // BQ .
∵ ∠ADC=90° ∴∠AQB=90° 即QB⊥AD.
∵ PA=PD, ∴PQ⊥AD.
∵ PQ∩BQ=Q,∴AD⊥平面PBQ.
∵ AD平面PAD,
∴平面PQB⊥平面PAD.
(Ⅱ)∵PA=PD,Q為AD的中點, ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD. ………………………… 8分
(不證明PQ⊥平面ABCD直接建系扣1分)
如圖,以Q為原點建立空間直角坐標系.
則平面BQC的法向量為;
,
,
,
.…11分
設,
則,
,
∵,
∴ ,
∴
………… 10分
在平面MBQ中,,
,
∴ 平面MBQ法向量為. … 11分
∵二面角M-BQ-C為30°, ,
∴ . ……………… 12分
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com