精英家教網 > 高中數學 > 題目詳情
(本小題滿分10分)
設數列滿足:
(1)證明:恒成立;
(2)令,判斷的大小,并說明理由.

(1)證明略
(2)
解:(1)證法一:當時,,不等式成立,
假設時,成立  (2分),
時,.(5分)
時,時成立
綜上由數學歸納法可知, 對一切正整數成立   (6分)
證法二:當時,,結論成立;
假設時結論成立,即(2分)當時,
由函數的單增性和歸納假設有
(4分),
因此只需證:
而這等價于,
顯然成立,所以當是,結論成立;
綜上由數學歸納法可知, 對一切正整數成立   (6分)
證法三:由遞推公式得
    (2分)
上述各式相加并化簡得
        (4分)
時,顯然成立,  故(6分)
(2)解法一:(8分)
 (10分)
又顯然,故成立    (12分)
解法二:

(由(1)的結論)(8分)
    (10分)


所以         (12分)
解法三:    (8分)
    (10分)
      
,因此                 (12分)
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

為等差數列的前項和,且,則(  )
A.2008B.C.2012 D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

有下列數組排成一排:
 
如果把上述數組中的括號都去掉會形成一個數列:

則此數列中的第項是(    )
                                  

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

數列中,,若為等差數列,則=(   )。
A.0B.C.D.2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在等差數列{an}中,當ar=as(r≠s)時,{an}必定是常數數列.然而在等比數列{an}中,對正整數r、s(r≠s),當ar=as時,非常數數列{an}的一個例子是_____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分10分)
已知等差數列滿足:的前n項和為
(1)求;  
(2)令bn=(nN*),求數列的前n項和

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題共12分) 求。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知數列是等差數列,若,
,則_________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等差數列項的和=(   )
A               B              C             D   

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视