【題目】已知數列{bn}的前n項和是Sn , 且bn=1﹣2Sn , 又數列{an}、{bn}滿足點{an , 3 }在函數y=(
)x的圖象上.
(1)求數列{an},{bn}的通項公式;
(2)若cn=anbn+ ,求數列{an}的前n項和Tn .
【答案】
(1)解:當n≥2時,bn=1﹣2Sn,bn﹣1=1﹣2Sn﹣1,
兩式相減得:bn﹣bn﹣1=﹣2bn,即bn= bn﹣1,
又∵b1=1﹣2S1,即b1= ,
∴數列{bn}是首項、公比均為 的等比數列,
∴bn=
=
;
∵點{an,3 }在函數y=(
)x的圖象上,
∴3 =
,即
=
,
∴數列{an}的通項公式an=2n﹣1
(2)解:由(1)可知cn=anbn+ =(2n﹣1)
+3n,
記數列{anbn}的前n項和為Pn,數列{ }的前n項和為Qn,
∵Pn=1 +3
+…+(2n﹣1)
,
Pn=1
+3
+…+(2n﹣3)
+(2n﹣1)
,
∴ Pn=
+2(
+
+…+
)﹣(2n﹣1)
= +2
﹣(2n﹣1)
= ﹣
,
∴Pn=1﹣(n+1) ,
又∵Qn= =
,
∴Tn=Pn+Qn
=1﹣(n+1) +
= ﹣
﹣
【解析】(1)當n≥2時,利用bn=1﹣2Sn與bn﹣1=1﹣2Sn﹣1作差,整理得bn= bn﹣1 , 進而可知數列{bn}是首項、公比均為
的等比數列;通過將點{an , 3
}代入函數解析式y=(
)x中,進而計算可得結論;(2)通過(1)可知cn=(2n﹣1)
+3n , 通過記數列{anbn}的前n項和為Pn , 數列{
}的前n項和為Qn , 利用錯位相減法計算可知Pn=1﹣(n+1)
,利用等比數列的求和公式計算可知Qn=
,相加即得結論.
【考點精析】本題主要考查了數列的前n項和和數列的通項公式的相關知識點,需要掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知偶函數f(x)和奇函數g(x)的定義域都是(﹣4,4),且在(﹣4,0]上的圖象如圖所示,則關于x的不等式f(x)g(x)<0的解集是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在區間D上,如果函數f(x)為減函數,而xf(x)為增函數,則稱f(x)為D上的弱減函數.若f(x)=
(1)判斷f(x)在區間[0,+∞)上是否為弱減函數;
(2)當x∈[1,3]時,不等式 恒成立,求實數a的取值范圍;
(3)若函數g(x)=f(x)+k|x|﹣1在[0,3]上有兩個不同的零點,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知AA1=AB=AC,BC= AB,且AA1⊥平面ABC,點M、Q分別是BC、CC1的中點,點P是棱A1B1上的任一點.
(1)求證:AQ⊥MP;
(2)若平面ACC1A1與平面AMP所成的銳角二面角為θ,且cosθ= ,試確定點P在棱A1B1上的位置,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C所對的邊,角C是鈍角,且sinB= .
(1)求角C的值;
(2)若b=2,△ABC的面積為 ,求c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以點C(t, )(t∈R且t≠0)為圓心的圓經過原點O,且與x軸交于點A,與y軸交于點B.
(1)求證:△AOB的面積為定值.
(2)設直線2x+y﹣4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.
(3)在(2)的條件下,設P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系內,已知A(3,3)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若⊙C上存在點P,使∠MPN=90°,其中M、N的坐標分別為(﹣m,0)(m,0),則m的最大值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+4x+a﹣5,g(x)=m4x﹣1﹣2m+7.
(1)若函數f(x)在區間[﹣1,1]上存在零點,求實數a的取值范圍;
(2)當a=0時,若對任意的x1∈[1,2],總存在x2∈[1,2],使f(x1)=g(x2)成立,求實數m的取值范圍;
(3)若y=f(x)(x∈[t,2])的置于為區間D,是否存在常數t,使區間D的長度為6﹣4t?若存在,求出t的值;若不存在,請說明理由. (注:區間[p,q]的長度q﹣p)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com