精英家教網 > 高中數學 > 題目詳情
設坐標原點為O,拋物線y2=2x與過焦點的直線交于A,B兩點,則
OA
OB
=
 
分析:法一:根據拋物線的標準方程,求出焦點F(
1
2
,0 ),當AB的斜率不存在時,可得A(
1
2
,1),B(
1
2
,-1),求得
OA
OB
 的值,結合填空題的特點,得出結論.
法二:由拋物線y2=2x與過其焦點(
1
2
,0)的直線方程聯立,消去y整理成關于x的一元二次方程,設出A(x1,y1)、B(x2,y2)兩點坐標,
OA
• 
OB
=x1•x2+y1•y2,由韋達定理可以求得答案.
解答:解:法一:拋物線y2=2x的焦點F(
1
2
,0 ),
當AB的斜率不存在時,可得A(
1
2
,1),B(
1
2
,-1),
OA
OB
=(
1
2
,1)•(
1
2
,-1)=
1
4
-1=-
3
4
,
法二:由題意知,拋物線y2=2x的焦點坐標為(
1
2
,0),∴直線AB的方程為y=k(x-
1
2
),
y2=2x
y=k(x-
1
2
)
得k2x2-(k2+2)x+
1
4
k2=0,設A(x1,y1),B(x2,y2),
x1+x2=
k2+ 2
k2
,x1x2=
1
4
,y1•y2=k(x1-
1
2
)•k(x2-
1
2
)=k2[x1•x2-(x1+x2)+
1
4
]
OA
OB
=x1•x2+y1•y2=
k2+2
k2
+k2(
1
4
-
k2+2
4k2
+
1
4
) =-
3
4
,
故答案為:-
3
4
點評:本題考查拋物線的標準方程,以及簡單性質的應用,兩個向量的數量積公式,通過給變量取特殊值,檢驗所給的選項,是一種簡單有效的方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,設拋物線方程為,M為直線上任意一點,過M引拋物

線的切線,切點分別為A,B

(I)求證A,M,B三點的橫坐標成等差數列;

(Ⅱ)已知當M點的坐標為(2,一2p)時,.求此時拋物線的方程

(Ⅲ)是否存在點M.使得點C關于直線AB的對稱點D在拋物線上,其中,點C滿足(O為坐標原點)若存在。求出所有適合題意的點M的坐標;

若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视