精英家教網 > 高中數學 > 題目詳情

【題目】某蔬果經銷商銷售某種蔬果,售價為每公斤25元,成本為每公斤15元.銷售宗旨是當天進貨當天銷售.如果當天賣不出去,未售出的全部降價以每公斤10元處理完.根據以往的銷售情況,得到如圖所示的頻率分布直方圖:

(1)根據頻率分布直方圖計算該種蔬果日需求量的平均數(同一組中的數據用該組區間中點值代表);

(2)該經銷商某天購進了250公斤這種蔬果,假設當天的需求量為公斤,利潤為元.求關于的函數關系式,并結合頻率分布直方圖估計利潤不小于1750元的概率.

【答案】(1)265公斤 (2)0.7

【解析】

1)用頻率分布直方圖的每一個矩形的面積乘以矩形的中點坐標求和即為平均值;

(2)討論日需求量與250公斤的關系,寫出分段函數再利用頻率分布直方圖求概率即可.

(1)

故該種蔬果日需求量的平均數為265公斤.

(2)當日需求量不低于250公斤時,利潤元,

當日需求量低于250公斤時,利潤

所以

得,,

所以

故估計利潤不小于1750元的概率為0.7 .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據心理學家的統計,人體節律分為體力節律、情緒節律和智力節律三種.這些節律的時間周期分別為23天、28天、33.每個節律周期又分為高潮期、臨界日和低潮期三個階段.以上三個節律周期的半數為臨界日,這就是說11.5天、14天、16.5天分別為體力節律、情緒節律和智力節律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天計算).

1)請寫出小英的體力、情緒和智力節律曲線的函數;

2)試判斷小英在2019422日三種節律各處于什么階段,當日小英是否適合參加某項體育競技比賽?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,等邊三角形的中線與中位線相交于,已知旋轉過程中的一個圖形,下列命題中,錯誤的是

A. 恒有

B. 異面直線不可能垂直

C. 恒有平面⊥平面

D. 動點在平面上的射影在線段

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)求函數在區間[1,2]上的最大值;

(2)設在(0,2)內恰有兩個極值點,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人射擊,已知甲每次擊中目標的概率為,乙每次擊中目標的概率為

1)兩人各射擊一次,求至少有一人擊中目標的概率;

2)若制定規則如下:兩人輪流射擊,每人至多射擊2次,甲先射,若有人擊中目標即停止射擊.

①求乙射擊次數不超過1次的概率;

②記甲、乙兩人射擊次數和為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為自然對數的底數.

(1)若,求的單調區間;

(2)當時,記的最小值為,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一個正多邊形的每條邊和對角線恰各染成2018種顏色之一,且所有邊及對角線不全同色.若正多邊形中不存在兩色三角形(即三角形的三邊恰被染成兩種顏色),則稱該多邊形的染色是“和諧的”.求最大的正整數 ,使得存在一個和諧的染色正邊形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱錐的底面與圓錐的底面都在平面上,且過點,又的直徑,垂足為.設三棱錐的所有棱長都是1,圓錐的底面直徑與母線長也都是1,圓錐的底面直徑與母線長也都是1.求圓錐的頂點到三棱錐的三個側面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大;

(Ⅱ)若,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视