精英家教網 > 高中數學 > 題目詳情

定義:如果數列的任意連續三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.

 (1)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;

(2)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;

(3) 若是(2)中數列的“保三角形函數”,問數列最多有多少項.

解:(1)顯然,對任意正整數都成立,即是三角形數列. 

因為k>1,顯然有,由,解得.

所以當時,是數列的“保三角形函數”.

(2) 由,兩式相減得

所以,,經檢驗,此通項公式滿足     

顯然,因為,

所以 是“三角形”數列.  

  (3) 因為是單調遞減函數,所以,由

 

化簡得,解得,即數列最多有26項.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”(n∈N*).
(Ⅰ)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列{cn}的首項為2013,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8052,證明{cn}是“三角形”數列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中數列{cn}的“保三角形函數”,問數列{cn}最多有多少項?
(解題中可用以下數據:lg2≈0.301,lg3≈0.477,lg2013≈3.304)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•青浦區二模)[理科]定義:如果數列{an}的任意連續三項均能構成一個三角形的三邊長,則稱{an}為“三角形”數列.對于“三角形”數列{an},如果函數y=f(x)使得bn=f(an)仍為一個“三角形”數列,則稱y=f(x)是數列{an}的“保三角形函數”,(n∈N*).
(1)已知{an}是首項為2,公差為1的等差數列,若f(x)=kx,(k>1)是數列{an}的“保三角形函數”,求k的取值范圍;
(2)已知數列{cn}的首項為2010,Sn是數列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數列;
(3)根據“保三角形函數”的定義,對函數h(x)=-x2+2x,x∈[1,A],和數列1,1+d,1+2d(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數學 來源:2014屆安徽省高二下學期期末考試數學試卷(解析版) 題型:解答題

定義:如果數列的任意連續三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.

(Ⅰ)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;

(Ⅱ)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;

(Ⅲ)根據“保三角形函數”的定義,對函數,,和數列1,,,()提出一個正確的命題,并說明理由.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年北大附中高三2月統練理科數學 題型:解答題

定義:如果數列的任意連續三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.

(Ⅰ)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;

(Ⅱ)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;

(Ⅲ)根據“保三角形函數”的定義,對函數,和數列1,,,()提出一個正確的命題,并說明理由.

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视