精英家教網 > 高中數學 > 題目詳情

(本題10分)
已知函數(是自然對數的底數,).
(I)證明:對,不等式恒成立;
(II)數列的前項和為,求證:

解:(I)設
,當時,函數單調遞增;
時,,函數單調遞減. 當時,.


(-∞,1)
1
(1,+∞)


0
+

遞減
極小值
遞增
   
(II)由(I)可知,對任意的實數,不等式恒成立,設 
所以,即,
,

解析

練習冊系列答案
相關習題

科目:高中數學 來源:2011年云南省昆明三中、滇池中學高一上學期期中聯考數學 題型:解答題

(本題10分)
已知函數f(x)= ax+2,不等式<6的解集為,試求不等式≤1的解集.

查看答案和解析>>

科目:高中數學 來源:2013屆陜西西安音樂學院附屬中等音樂學校高二下期末數學試卷(解析版 題型:解答題

(本題10分)已知函數時都取得極值.(1)求的值;

(2)求函數極小值及單調增區間。

 

查看答案和解析>>

科目:高中數學 來源:海南省09-10高二第二學期期末考試文科試題 題型:解答題

(本題10分)已知函數

(1)解不等式

(2)若對,恒有成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010年浙江省高一上學期10月月考數學卷 題型:解答題

(本題10分)

已知函數  (∈R).

(1)試給出的一個值,并畫出此時函數的圖象;

(2)若函數 f (x) 在 R 上具有單調性,求的取值范圍.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视