精英家教網 > 高中數學 > 題目詳情

(本題滿分16分)

已知曲線Eax2by2=1(a>0,b>0),經過點M(,0)的直線l與曲線E

于點A、B,且→=-2→.

(1)若點B的坐標為(0,2),求曲線E的方程;

(2)若ab=1,求直線AB的方程.

解:

A(x0y0),因為B(0,2),M(,0)

  故→=(-,2),→=(x0-,y0).  ……………………………………2分

因為→=-2→,所以(-,2)=-2(x0-,y0).

所以x0=,y0=-1.即A(,-1).    ……………………………………4分

因為A,B都在曲線E上,所以解得a=1,b=.

所以曲線E的方程為x2+=1.           ……………………………………6分

(2)(法一)當ab=1時,曲線E為圓:x2y2=1.設A(x1y1),B(x2,y2).

因為→=-2→,所以(x2-,y2) =-2(x1-,y1),即

設線段AB的中點為T,則點T的坐標為(,),即(,-).

所以((OT=(,-),((AB=(x2x1,y2y1)=(-3x1,-3y1).

因為OTAB,所以((OT×((AB=0,即3-4x1+3x+3y=0.

因為xy=1,所以x1=,y1=±.

當點A的坐標為(,-)時,對應的點B的坐標為(0,1),此時直線AB的斜率

k=-,所求直線AB的方程為y=-x+1;

當點A的坐標為(,)時,對應的點B的坐標為(0,-1),此時直線AB的斜率k=,

所求直線AB的方程為yx-1.          ……………………………………16分

(法二)當ab=1時,曲線E為圓:x2y2=1.設A(x1,y1),B(x2,y2).

因為→=-2→,所以(x2-,y2) =-2(x1-,y1),即

因為點A,B在圓上,所以 

由①×4-②,得(2x1x2)(2x1x2)=3.所以2x1x2=,解得x1=,x2=0.

x1=,得y1=±.(以下同方法一)

(法三)如圖,設AB中點為T

TMTAMAAB,OM=.

根據Rt△OTA和Rt△OTM,得

即解得AB=,OT=.所以在Rt△OTM中,tanÐOMT==.

所以kAB=-或.所以直線AB的方程為y=-x+1或yx-1.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

本題滿分16分)兩個數列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數列的充要條件是{an}為等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.

已知函數、是常數,且),對定義域內任意、),恒有成立.

(1)求函數的解析式,并寫出函數的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分16分)已知數列的前項和為,且.數列中,,

 .(1)求數列的通項公式;(2)若存在常數使數列是等比數列,求數列的通項公式;(3)求證:①;②

查看答案和解析>>

科目:高中數學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題

本題滿分16分)已知圓內接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數學 來源:2010年上海市徐匯區高三第二次模擬考試數學卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數

(1)判斷并證明上的單調性;

(2)若存在,使,則稱為函數的不動點,現已知該函數有且僅有一個不動點,求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视