在直角梯形ABCD中,AB∥CD,AD⊥AB,CD=2AB=4,AD=,E為CD的中點,將△BCE沿BE折起,使得CO⊥DE,其中垂足O在線段DE內.
(1)求證:CO⊥平面ABED;
(2)問∠CEO(記為θ)多大時,三棱錐C-AOE的體積最大,最大值為多少.
科目:高中數學 來源: 題型:解答題
一個多面體的直觀圖和三視圖如圖所示,其中M,N分別是AB,AC的中點,G是DF上的一動點.
(1)求該多面體的體積與表面積;
(2)求證:GN⊥AC;
(3)當FG=GD時,在棱AD上確定一點P,使得GP∥平面FMC,并給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,為了制作一個圓柱形燈籠,先要制作4個全等的矩形骨架,總計耗用9.6米鐵絲.再用S平方米塑料片制成圓柱的側面和下底面(不安裝上底面).
(1)當圓柱底面半徑r取何值時,S取得最大值?并求出該最大值(結果精確到0.01平方米).
(2)若要制作一個如圖放置的、底面半徑為0.3米的燈籠,請作出燈籠的三視圖(作圖時,不需考慮骨架等因素).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
一個幾何體是由圓柱和三棱錐
組合而成,點
、
、
在圓
的圓周上,其正(主)視圖、側(左)視圖的面積分別為10和12,如圖4所示,其中
,
,
,
.
(1)求證:;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱錐S ABC中,平面EFGH分別與BC,CA,AS,SB交于點E,F,G,H,且SA⊥平面EFGH,SA⊥AB,EF⊥FG.
求證:(1)AB∥平面EFGH;
(2)GH∥EF;
(3)GH⊥平面SAC.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知一個四棱錐P-ABCD的三視圖(正視圖與側視圖為直角三角形,俯視圖是帶有一條對角線的正方形)如圖,E是側棱PC的中點.
(1)求四棱錐P-ABCD的體積;
(2)求證:平面APC⊥平面BDE.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖C,D是以AB為直徑的圓上的兩點,,F是AB上的一點,且
,將圓沿AB折起,使點C在平面ABD的射影E在BD上,已知
(1)求證:AD平面BCE
(2)求證:AD//平面CEF;
(3)求三棱錐A-CFD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知直三棱柱的三視圖如圖所示,且
是
的中點.
(Ⅰ)求證:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點
,使
與
成
角?若存在,確定
點位置,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com