【題目】如圖,在直三棱柱中,平面
側面
,且
(1)求證: ;
(2)若直線與平面
所成的角為
,請問在線段
上是否存在點
,使得二面角
的大小為
,請說明理由.
科目:高中數學 來源: 題型:
【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態度進行調查,得到的統計數據如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學習積極性高 | 18 | 7 | 25 |
學習積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
如果隨機調查這個班的一名學生,求事件A:抽到不積極參加班級工作且學習積極性不高的學生的概率;
若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現從中抽取兩名學生參加某項活動,請用字母代表不同的學生列舉出抽取的所有可能結果;
在
的條件下,求事件B:兩名學生中恰有1名男生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數).
是曲線
上的動點,將線段
繞
點順時針旋轉
得到線段
,設點
的軌跡為曲線
.以坐標原點
為極點,
軸正半軸為極軸建立極坐標系.
(I)求曲線,
的極坐標方程;
(II)在(I)的條件下,若射線與曲線
,
分別交于
兩點(除極點外),且有定點
,求
面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
為自然對數的底數),
是
的導函數.
(Ⅰ)當時,求證
;
(Ⅱ)是否存在正整數,使得
對一切
恒成立?若存在,求出
的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年時紅軍長征勝利80周年,某市電視臺舉辦紀念紅軍長征勝利80周年知識問答,宣傳長征精神.首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動.
公園 | 甲 | 乙 | 丙 | 丁 |
獲得簽名人數 | 45 | 60 | 30 | 15 |
然后在各公園簽名的人中按分層抽樣的方式抽取10名幸運之星回答問題,從10個關于長征的問題中隨機抽取4個問題讓幸運之星回答,全部答對的幸運之星獲得一份紀念品.
(Ⅰ)求此活動中各公園幸運之星的人數;
(Ⅱ)若乙公園中每位幸運之星對每個問題答對的概率均為,求恰好2位幸運之星獲得紀念品的概率;
(Ⅲ)若幸運之星小李對其中8個問題能答對,而另外2個問題答不對,記小李答對的問題數為,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
底面ABCD,底面ABCD為梯形,
,
,且
.
(1)在PD上是否存在一點F,使得平面PAB,若存在,找出F的位置,若不存在,請說明理由;
(2)求二面角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠為了評估某種零件生產過程的情況,制定如下規則:若零件的尺寸在,則該零件的質量為優秀,生產過程正常;若零件的尺寸在
且不在
,則該零件的質量為良好,生產過程正常;若零件的尺寸在
且不在
,則該零件的質量為合格,生產過程正常;若零件的尺寸不在
,則該零件不合格,同時認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查,(其中
為樣本平均數,
為樣本標準差)下面是檢驗員從某一天生產的一批零件中隨機抽取的20個零件尺寸的莖葉圖(單位:cm)經計算得
,其中
為抽取的第
個零件的尺寸,
.
(1)利用該樣本數據判斷是否需對當天的生產過程進行檢查;
(2)利用該樣本,從質量良好的零件中任意抽取兩個,求抽取的兩個零件的尺寸均超過的概率;
(3)剔除該樣本中不在的數據,求剩下數據的平均數
和標準差
(精確到0.01)
參考數據:,
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,試求函數圖像過點
的切線方程;
(2)當時,若關于
的方程
有唯一實數解,試求實數
的取值范圍;
(3)若函數有兩個極值點
,且不等式
恒成立,試求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com