精英家教網 > 高中數學 > 題目詳情
設a=tan1,b=tan2,c=tan3,d=tan4,則a,b,c,d大小關系為(  )
分析:利用
π
4
<1<
π
2
<2<3<π<4<
2
及正切函數的單調性與周期性即可比較a,b,c,d大小關系.
解答:解:∵y=tanx在(0,
π
2
)單調遞增且tanx>0,在(
π
2
,π)上單調遞增且tanx<0,在(π,
2
)單調遞增且tanx>0,
π
4
<1<
π
2
<2<3<π<4<
2
,
∴tan2<tan3<0,
tan1>0,tan4>0,
又tan4=tan(4-π)<tan1,a=tan1,b=tan2,c=tan3,d=tan4,
∴a>d>c>b.
故選C.
點評:本題考查正切函數的單調性與周期性,得到
π
4
<1<
π
2
<2<3<π<4<
2
是關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設a=sin1,b=cos1,c=tan1,下列關系正確的是( 。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設a=tan1,b=tan2,c=tan3,d=tan4,則a,b,c,d大小關系為( 。
A.d>a>c>bB.a>d>b>cC.a>d>c>bD.d>a>b>c

查看答案和解析>>

科目:高中數學 來源:2011-2012學年黑龍江省哈爾濱三中高一(上)期末數學試卷(解析版) 題型:選擇題

設a=tan1,b=tan2,c=tan3,d=tan4,則a,b,c,d大小關系為( )
A.d>a>c>b
B.a>d>b>c
C.a>d>c>b
D.d>a>b>c

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视