精英家教網 > 高中數學 > 題目詳情

(05年上海卷)(12分)

已知直四棱柱中,,底面是直角梯形,為直角,,,求異面直線所成角的大。ńY果用反三角函數值表示)

解析:[解法一]由題意AB//CD,是異面直線BC1與DC所成的角.

連結AC1與AC,在Rt△ADC中,可得

 

又在Rt△ACC1中,可得AC1=3.

在梯形ABCD中,過C作CH//AD交AB于H,

又在中,可得,

∴異而直線BC1與DC所成角的大小為

[解法二]如圖,以D為坐標原點,分別以AD、DC、DD1所在直線為x、y、z軸建立直

角坐標系.

則C1(0,1,2),B(2,4,0)

所成的角為,

∴異面直線BC1與DC所成角的大小為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.

(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;

(2)設通過最后三關后,能被錄取的人數為,求隨機變量的期望

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年江蘇百校樣本分析)(10分)(矩陣與變換)  給定矩陣  A= =

(1)求A的特征值、及對應的特征向量;  

(2)求

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年莆田四中一模理) (14分)

由函數確定數列,,若函數的反函數 能確定數列,,則稱數列是數列的“反數列”。

(1)若函數確定數列的反數列為,求的通項公式;

(2)對(1)中,不等式對任意的正整數恒成立,求實數的范圍;

(3)設,若數列的反數列為,的公共項組成的數列為;求數列項和

 

查看答案和解析>>

科目:高中數學 來源: 題型:

(05年遼寧卷)(12分)

已知函數.設數列滿足,數列滿足

,,

(Ⅰ)用數學歸納法證明;(Ⅱ)證明

查看答案和解析>>

科目:高中數學 來源: 題型:

(05年湖北卷文)(12分)

設數列的前n項和為Sn=2n2,為等比數列,且

   (Ⅰ)求數列的通項公式;

   (Ⅱ)設,求數列的前n項和Tn.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视