精英家教網 > 高中數學 > 題目詳情
已知向量=(sinωx,1),=(ωx,ωx)(A>0,ω>0),函數f(x)=的最大值為3,且其圖象相鄰兩條對稱軸之間的距離為π.
(I)求函數f(x)的解析式;
(II)將函數y=f(x)的圖象向左平移個單位,再將所得圖象上各點的橫坐標縮短為原來的倍,縱坐標不變,得到函數y=g(x)的圖象.
(1)求函數g(x)的單調遞減區間;
(2)求函數g(x)在上的值域.
【答案】分析:(I)利用兩個向量的數量積的定義、三角函數的恒等變換,化簡函數f(x)的解析式為Asin(2ωx+),由最大值求得A,由周期求出ω,從而確定函數f(x)的解析式.
(II)根據y=Asin(ωx+∅)的圖象變換規律 求出函數g(x)=3sin(2x+).(1)由2kπ+≤2x+≤2kπ+,求得x的范圍,即可求得g(x)的單調遞減區間.
(2)當x的范圍,求得2x+的范圍,可得sin(2x+)的范圍,從而求得g(x)的范圍.
解答:解:(I)函數f(x)==Asinωxcosωx+cos2ωx=A(sinωxcosωx+cos2ωx)=Asin(2ωx+),…(3分)
因為函數f(x)的最大值為3,且其圖象相鄰兩條對稱軸之間的距離為π,
所以A=3,函數的周期T=2π,又 T=,所以ω=.   …(5分)
所以 f(x)=3sin(x+).   …(6分)
(II)將函數y=f(x)的圖象向左平移個單位,得到函數 y=3sin[(x+)+]的圖象,
再將所得圖象上各點的橫坐標縮短為原來的 倍,縱坐標不變,得到函數g(x)=3sin(2x+)的圖象.       …(8分)
(1)因為函數y=sinx 的單調遞減區間為[2kπ+,2kπ+],(k∈z ),
所以 2kπ+≤2x+≤2kπ+,解得 kπ+≤x≤kπ+,
所以函數g(x)的單調遞減區間為[kπ+,kπ+],(k∈z).…(11分)
(2)當x∈[,]時,2x+∈[,],sin(2x+)∈[-,],g(x)∈[-,].
所以函數g(x)在[,]上的值域為[-].    …(14分)
點評:本題主要考查兩個向量的數量積的定義,三角函數的恒等變換及化簡求值,y=Asin(ωx+∅)的圖象變換規律,正弦函數的定義域和值域、單調性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(sinβ,1),
b
=(2,-1)且
a
b
π
2
<β<π,則β等于
5
6
π
5
6
π
弧度.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinωx,-cosωx),
b
=(
3
cosωx,cosωx)(ω>0),函數f(x)=
a
b
+
1
2
,且函數f(x)=
3
sinωxcosωx-cos2ωx+
1
2
的圖象中任意兩相鄰對稱軸間的距離為π.
(1)求ω的值;
(2)已知在△ABC中,角A,B,C所對的邊分別為a,b,c,f(C)=
1
2
,且c=2
19
,△ABC的面積S=2
3
,求a+b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2)
(1)若
a
b
,求tanθ的值;
(2)若
a
b
,且θ為第Ⅲ象限角,求sinθ和cosθ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•德州二模)已知向量
a
=(sinα,1),
b
=(2,2cosα-
2
),(
π
2
<α<π
),若
a
b
,則sin(α-
π
4
)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(cosθ,
3
),且
a
b
,其中θ∈(0,
π
2
).
(1)求θ的值;
(2)若sin(x-θ)=
3
5
,0<x<
π
2
,求cosx的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视