【題目】設橢圓,右頂點是
,離心率為
.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點
(
不同于點
),若
,求證:直線
過定點,并求出定點坐標.
科目:高中數學 來源: 題型:
【題目】某旅游區每年各個月份接待游客的人數近似地滿足周期性規律,因而第個月從事旅游服務工作的人數
可近似地用函數
來刻畫,其中正整數
表示月份且
,例如
表示1月份,
和
是正整數,
,
. 統計發現,該地區每年各個月份從事旅游服務工作的人數有以下規律:
① 每年相同的月份,該地區從事旅游服務工作的人數基本相同;
② 該地區從事旅游服務工作的人數最多的8月份和最少的2月份相差400人;
③ 2月份該地區從事旅游服務工作的人數為100人,隨后逐月遞增直到8月份達到最多.
(1)試根據已知信息,求的表達式;
(2)一般地,當該地區從事旅游服務工作的人數在400或400以上時,該地區也進入了一年中的旅游“旺季”,那么,一年中的哪幾個月是該地區的旅游“旺季”?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M:與
軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長;
(3)若點是直線
上的動點,過點
作直線
與圓M相切,
為切點,求四邊形
面積的最小值.
【答案】(1) (2)
(3)
【解析】試題分析:(1)先將圓的一般方程化成標準方程,利用直線和圓相切進行求解;(2) 令,得到關于
的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉化為點到直線的的距離進行求解.
試題解析:(1) ∵圓M:
與
軸相切
∴ ∴
(2) 令,則
∴
∴
(3)
∵的最小值等于點
到直線
的距離,
∴ ∴
∴四邊形面積的最小值為
.
【題型】解答題
【結束】
20
【題目】在平面直角坐標系中,圓
的方程為
,且圓
與
軸交于
,
兩點,設直線
的方程為
.
(1)當直線與圓
相切時,求直線
的方程;
(2)已知直線與圓
相交于
,
兩點.
(。┤,求實數
的取值范圍;
(ⅱ)直線與直線
相交于點
,直線
,直線
,直線
的斜率分別為
,
,
,
是否存在常數,使得
恒成立?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的圖象為
,則以下結論中正確的是__________.(寫出所有正確結論的編號)
①圖象關于直線
對稱;
②圖象關于點
對稱;
③函數在區間
內是增函數;
④由的圖象向右平移
個單位長度可以得到圖象
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為F1,F2,離心率為
,設過點F2的直線l被橢圓C截得的線段為MN,當l⊥x軸時,|MN|=3.
(1)求橢圓C的標準方程;
(2)在x軸上是否存在一點P,使得當l變化時,總有PM與PN所在的直線關于x軸對稱?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)求函數的單調區間;
(Ⅱ)如果對于任意的,
恒成立,求實數
的取值范圍;
(III)設函數,
,過點
作函數
的圖象的所有切線,令各切點的橫坐標按從小到大構成數列
,求數列
的所有項之和的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】是衡量空氣污染程度的一個指標,為了了解
市空氣質量情況,從
年每天的
值的數據中隨機抽取
天的數據,其頻率分布直方圖如圖所示.將
值劃分成區間
、
、
、
,分別稱為一級、二級、三級和四級,統計時用頻率估計概率 .
(1)根據年的數據估計該市在
年中空氣質量為一級的天數;
(2)按照分層抽樣的方法,從樣本二級、三級、四級中抽取天的
數據,再從這
個數據中隨機抽取
個,求僅有二級天氣的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a,b,c為實數,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分別為集合S,T 的元素個數,則下列結論不可能的是( )
A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com