精英家教網 > 高中數學 > 題目詳情

已知是函數圖象上的任意一點,是該圖象的兩個端點, 點滿足,(其中軸上的單位向量),若(為常數)在區間上恒成立,則稱在區間上具有 “性質”.現有函數:

;        ②;     ③;    ④.

則在區間上具有“性質”的函數為         .

 

【答案】

①②③④

【解析】

試題分析:①;顯然;

;直線AB的方程為:,設D點的橫坐標為,則.所以具有T性質;

,直線AB的方程為:,設D點的橫坐標為,則;

.直線AB的方程為:,設D點的橫坐標為,則.

考點:1、新定義;2、函數及重要不等式.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

科目:高中數學 來源:隨堂練1+2 講·練·測 高中數學·必修1(蘇教版) 蘇教版 題型:044

已知f(x)=x+的定義域為(0,+∞),且f(2)=2+,設P是函數圖象上的任一點,過P分別作直線y=x和y軸的垂線,垂足分別為M、N.

(1)求a的值.

(2)問|PM|·|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.

(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

科目:高中數學 來源:惠州一模 題型:解答題

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省常州一中高三(下)期初數學試卷(解析版) 題型:解答題

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视