精英家教網 > 高中數學 > 題目詳情

已知橢圓,拋物線的焦點均在軸上,的中心和的頂點均為原點,每條曲線上取兩個點,將其坐標記錄于表中:

(1)求,的標準方程;

(2)設斜率不為0的動直線有且只有一個公共點,且與的準線交于,試探究:在坐標平面內是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標,若不存在,請說明理由.

 

【答案】

(1) ;(2)存在定點.

【解析】

試題分析:(1)設出標準方程,由點的坐標代入求出基本量即得;(2)巧設直線的方程為,由直線與橢圓相切,求得,利用直線的準線相交求點的坐標,寫出以為直徑的圓的方程,利用恒成立求解.

試題解析:(1)設,的標準方程為:,,∵代入拋物線方程中得到的解相同,∴,      (3分)

在橢圓上,把點的坐標代入橢圓方程得,,則,

的標準方程分別為.        (6分)

(2)設直線的方程為,將其代入消去并化簡整理得:

,又直線與橢圓相切,

,∴,     (8分)

設切點,則,

又直線的準線的交點

∴以為直徑的圓的方程為,      (10分)

化簡整理得恒成立,

,,即存在定點符合題意.       (13分)

考點: 橢圓、拋物線的性質,圓的性質,直線與圓橢圓的關系,定點問題.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上各取兩個點,將其坐標記錄于下表中:

3

2

4

0

4

⑴求的標準方程;

⑵是否存在直線滿足條件:①過的焦點;②與交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2014屆河南安陽一中高二第一次階段測試理科數學試卷(解析版) 題型:解答題

已知橢圓,拋物線的焦點均在軸上,的中心和的頂點均為坐標原點,從每條曲線上各取兩個點,將其坐標記錄于表中:

 

 

 

 

 

 

(1)求的標準方程;

(2)請問是否存在直線同時滿足條件:(ⅰ)過的焦點;(ⅱ)與交于不同兩點、,且滿足.若存在,求出直線的方程;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年河南省南陽市高三春期第十一次考試理科數學試卷(解析版) 題型:解答題

  已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標記錄于下表中:

3

4

0

(1)求,的標準方程;

(2)請問是否存在直線滿足條件:①過的焦點;②與交于不同兩點,且滿足?若存在,求出直線的方程;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年吉林省長春市高三第一次調研測試文科數學試卷(解析版) 題型:解答題

(本小題滿分12分)

已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上各取兩個點,將其坐標記錄于下表中:

 

3

2

4

0

4

[

 

⑴求的標準方程;

⑵是否存在直線滿足條件:①過的焦點;②與交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视