精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=2x+a2x , 其中常數a≠0.
(1)當a=1時,f(x)的最小值;
(2)當a=256時,是否存在實數k∈(1,2],使得不等式f(k﹣cosx)≥f(k2﹣cos2x)對任意x∈R恒成立?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.

【答案】
(1)解:當a=1時,f(x)=2x+ ≥2 =2,

當且僅當 ,即x=0時取等號


(2)解:當k∈(1,2]時,0<k﹣cosx≤3,0<k2﹣cos2x≤4,

當a=256時,f(x)=2x+2562x,

由復合函數的單調性知,f(x)在(0,4)上是減函數,要使不等式f(k﹣cosx)≥f(k2﹣cos2x)對任意x∈R恒成立,只要k﹣cosx≤k2﹣cos2x,即cos2x﹣cosx≤k2﹣k

設g(x)=cos2x﹣cosx,則g(x)的最大值為2.

要使得①式成立,必須k2﹣k≥2,即k≥2或k≤﹣1

∴在區間(1,2]上存在k=2,使得原不等式對任意的x∈R恒成立


【解析】(1)利用基本不等式a+b≥2 (a>0,b>0)直接可求得最小值;(2)復合函數的單調性知,f(x)在(0,4)上是減函數,要使不等式f(k﹣cosx)≥f(k2﹣cos2x)對任意x∈R恒成立,只要k﹣cosx≤k2﹣cos2x,即cos2x﹣cosx≤k2﹣k ①;設g(x)=cos2x﹣cosx,則g(x)的最大值為2.
【考點精析】解答此題的關鍵在于理解函數的最大(小)值與導數的相關知識,掌握求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】三國魏人劉徽,自撰《海島算經》,專論測高望遠.其中有一題今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何?翻譯如下:要測量海島上一座山峰的高度,立兩根高三丈的標桿,前后兩竿相距,使后標桿桿腳與前標桿桿腳與山峰腳在同一直線上,從前標桿桿腳退行步到,人眼著地觀測到島峰,、、三點共線,從后標桿桿腳退行步到,人眼著地觀測到島峰,、三點也共線,山峰的高度__________步.(古制尺,步)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin2xcos2x+sin22x﹣
(1)求函數f(x)的最小正周期及對稱中心;
(2)在△ABC中,角B為鈍角,角A,B,C的對邊分別為a、b、c,f( )= ,且sinC= sinA,SABC=4,求c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x+ |﹣|x﹣ |;
(1)作出函數f(x)的圖象;
(2)根據(1)所得圖象,填寫下面的表格:

性質

定義域

值域

單調性

奇偶性

零點

f(x)


(3)關于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個不同的實數解,求n的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,若存在實數x1 , x2 , x3 , x4滿足f(xl)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則x1x2x3x4的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0a≠1,設命題p:函數y=loga(x-1)(1,+∞)上單調遞減,命題q:曲線y=x2+(a-2)x+4x軸交于不同的兩點.若pq為真命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的奇函數f(x)和偶函數g(x)滿足f(x)+g(x)=ax﹣ax+2,若g(2)=a,則f(2)=(
A.2
B.
C.
D.a2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 且Sn=n2+n.
(1)求數列{an}的通項公式an;
(2)數列{bn}滿足bn= (n∈N*),求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了整頓食品的安全衛生,食品監督部門對某食品廠生產的甲、乙兩種食品進行了檢測調研,檢測某種有害微量元素的含量,隨機在兩種食品中各抽取了10個批次的食品,每個批次各隨機地抽取了一件,下表是測量數據的莖葉圖(單位:毫克)

規定:當食品中的有害微量元素含量在[0,10]時為一等品,在(10,20]為二等品,20以上為劣質品.
(1)用分層抽樣的方法在兩組數據中各抽取5個數據,再分別從這5個數據中各選取2個.求甲的一等品數與乙的一等品數相等的概率;
(2)每生產一件一等品盈利50元,二等品盈利20元,劣質品虧損20元.根據上表統計得到的甲、乙兩種食品為一等品、二等品、劣質品,的頻率分別估計這兩種食品為,一等品、二等品、劣質品的概率.若分別從甲、乙食品中各抽取l件,設這兩件食品給該廠帶來的盈利為X,求隨機變量X的概率分布和數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视