精英家教網 > 高中數學 > 題目詳情
已知|
e
|=1
,且滿足|
a
+
e
|=|
a
-2
e
|
,則向量
a
e
方向上的投影等于______.
|
a
+
e
|=|
a
-2
e
|

(
a
+
e
)
2
=(
a
-2
e
)
2

a
2
 +2
e
a
+
e
2
=
a
2
 -4
e
a
+4
e
2
,
a
e
 =
1
2

又∵|
e
|=1

∴向量
a
e
方向上的投影為:
a
e
|
e
|
=
1
2

故答案為:
1
2
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

甲、乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或下滿6局時停止.設甲在每局中獲勝的概率為p(p>
1
2
),且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
5
9

(1)求p的值;
(2)設ξ表示比賽停止時已比賽的局數,求隨機變量ξ的分布列和數學期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

在第十六屆廣州亞運會上,某項目的比賽規則為:由兩人(記為甲和乙)進行比賽,每局勝者得1分,負者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設甲在每局中獲勝的概率為p(p>0.5),且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
59

(Ⅰ)求實數p的值;
(Ⅱ)如圖為統計比賽的局數n和甲、乙的總得分數S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應分別填寫什么條件;
(Ⅲ)設ζ表示比賽停止時已比賽的局數,求隨機變量ζ的分布列和數學期望Eζ.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•遼寧一模)甲乙兩人進行乒乓球對抗賽,約定每局勝者得1分,負者得0分,比賽進行到有一個比對方多2分或打滿6局時停止.設甲在每局中獲勝的概率為P(P>
1
2
)
,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
5
9
.若圖為統計這次比賽的局數n和甲,乙的總得分數S,T的程序框圖.其中如果甲獲勝則輸入a=1,b=0.如果乙獲勝,則輸入a=0,b=1.
(1)在圖中,第一,第二兩個判斷框應分別填寫什么條件?
(2)求P的值.
(3)設ξ表示比賽停止時已比賽的局數,求隨機變量ξ的分布列和數學期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•許昌三模)甲乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分.比賽進行到有一人比對方多2分或打滿6局時停止,設甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負相互獨立,已知第二局比賽結束時比賽停止的概率為
5
9
,若右圖為統計這次比賽的局數和甲乙的總得分數S,T的程序框圖,其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.
(I)求p的值;
(Ⅱ)設ξ表示比賽停止時已比賽的局數,求隨機變量ξ的分布列數學望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

甲、乙兩同學進行下棋比賽,約定每局勝者得1分,負者得0分(無平局),比賽進行到有一個人比對方多2分或比滿8局時停止,設甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負相互獨立.已知第二局比賽結束時比賽停止的概率為
5
8

(I)如圖為統計這次比賽的局數n和甲、乙的總得分S,T的程序框圖.其中如果甲獲勝,輸人a=l.b=0;如果乙獲勝,則輸人a=0,b=1.請問在①②兩個判斷框中應分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設ξ表示比賽停止時已比賽的局數,求隨機變量ξ的分布列和Eξ.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视