精英家教網 > 高中數學 > 題目詳情
已知橢圓的左右焦點分別為F1,F2,左頂點為A,若|F1F2|=2,橢圓的離心率為e=,
(1)求橢圓的標準方程;
(2)若P是橢圓上的任意一點,求的取值范圍;
(3)直線l:y=kx+m與橢圓相交于不同的兩點M,N (均不是長軸的頂點),AH⊥MN垂足為H且,求證:直線l恒過定點.
解:(1)由題意得,。 
(2)設,
,
由橢圓方程得,二次函數開口向上,對稱軸x=-6<-2,
當x0=-2時,取最小值0;當x0=2時, 取最大值12,
的取值范圍是[0,12]。
(3)由,得
由△>0,得, ※
,則,,
,

,
,∴均適合※,
時,直線過A,舍去,故;
時,直線過定點
練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年安徽省高三第一次月考理科數學試卷(解析版) 題型:解答題

已知橢圓的左右焦點分別是,直線與橢圓交于兩點,.當時,M恰為橢圓的上頂點,此時△的周長為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設橢圓的左頂點為A,直線與直線分別相交于點,,問當

變化時,以線段為直徑的圓被軸截得的弦長是否為定值?若是,求出這個定值,

若不是,說明理由.

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓數學公式的左右焦點分別是F1,F2,過右焦點F2且斜率為k的直線與橢圓交于A,B兩點.
(1)若k=1,求|AB|的長度、△ABF1的周長;
(2)若數學公式,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設橢圓的左頂點為A,直線與直線:

分別相交于點,問當變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設橢圓的左頂點為A,直線與直線:

分別相交于點,問當變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,

說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設橢圓的左頂點為A,直線與直線:

分別相交于點,問當變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视