【題目】依據某地某條河流8月份的水文觀測點的歷史統計數據所繪制的頻率分布直方圖如圖(甲)所示;依據當地的地質構造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.
試估計該河流在8月份水位的中位數;
(1)以此頻率作為概率,試估計該河流在8月份發生1級災害的概率;
(2)該河流域某企業,在8月份,若沒受1、2級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.
現此企業有如下三種應對方案:
方案 | 防控等級 | 費用(單位:萬元) |
方案一 | 無措施 | 0 |
方案二 | 防控1級災害 | 40 |
方案三 | 防控2級災害 | 100 |
試問,如僅從利潤考慮,該企業應選擇這三種方案中的哪種方案?說明理由.
【答案】(1)(2)應選方案二.
【解析】【試題分析】中位數是左右兩邊小長方形面積為的地方.(1)由于乙圖中頻率分成
個部分,故將水位頻率和對應
級災害的頻率對應起來,利用相互獨立事件概率計算公式,將發生
級災害的概率計算出來.(2)分別計算方案
、方案
和方案
對應的利潤分布列及數學期望,由此判斷出方案
較合理.
【試題解析】
(1)依據甲圖,記該河流8月份“水位小于40米”為事件,“水位在40米至50米之間”為事件
,“水位大于50米”為事件
,它們發生的概率分別為:
,
.
記該地8月份“水位小于40米且發生1級災害”為事件,“水位在40米至50米之間且發生1級災害”為事件
,“水位大于50米且發生1級災害”為事件
,
所以.
記“該河流在8月份發生1級災害”為事件.則
.
估計該河流在8月份發生1級災害的概率為.
(2)以企業利潤為隨機變量,
選擇方案一,則利潤(萬元)的取值為:
,由(1)知
.
的分布列為
X1 | 500 | -100 | -1000 |
P | 0.81 | 0.155 | 0.035 |
則該企業在8月份的利潤期望
(萬元).
選擇方案二,則(萬元)的取值為:
,由(1)知,
,
的分布列為:
X2 | 460 | -1040 |
P | 0.965 | 0.035 |
則該企業在8月份的平均利潤期望(萬元)
選擇方案三,則該企業在8月份的利潤為: (萬元)由于
,因此企業應選方案二.
科目:高中數學 來源: 題型:
【題目】綠色已成為當今世界主題,綠色動力已成為時代的驅動力,綠色能源是未來新能源行業的主導.某汽車公司順應時代潮流,最新研發了一款新能源汽車,并在出廠前對100輛汽車進行了單次最大續航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠里程)的測試.現對測試數據進行分析,得到如圖所示的頻率分布直方圖.
(1)估計這100輛汽車的單次最大續航里程的平均值(同一組中的數據用該組區間的中點值代表);
(2)根據大量的汽車測試數據,可以認為這款汽車的單次最大續航里程近似地服從正態分布
,經計算第(1)問中樣本標準差
的近似值為50.用樣本平均數
作為
的近似值,用樣本標準差
作為
的估計值;
(。┈F從該汽車公司最新研發的新能源汽車中任取一輛汽車,求它的單次最大續航里程恰好在200千米到350千米之間的概率;
(ⅱ)從該汽車公司最新研發的新能源汽車中隨機抽取10輛,設這10輛汽車中單次最大續航里程恰好在200千米到350千米之間的數量為,求
;
(3)某汽車銷售公司為推廣此款新能源汽車,現面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據拋擲硬幣的結果,操控微型遙控車在方格圖上行進,若遙控車最終停在“勝利大本營”,則可獲得購車優惠券.已知硬幣出現正、反面的概率都是,方格圖上標有第0格、第1格、第2格、…、第50格.遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次,若擲出正面,遙控車向前移動一格(從
到
),若擲出反面,遙控車向前移動兩格(從
到
),直到遙控車移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結束.設遙控車移到第
格的概率為
,其中
,試說明
是等比數列,并解釋此方案能否成功吸引顧客購買該款新能源汽車.
參考數據:若隨機變量服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四個命題:①兩個隨機變量的線性相關性越強,相關系數的絕對值越接近1;②在回歸分析中,可用相關指數的值判斷擬合效果,
越小,模型的擬合效果越好; ③若數據
的方差為1,則
的方差為4;④已知一組具有線性相關關系的數據
,其線性回歸方程
,則“
滿足線性回歸方程
”是“
,
”的充要條件;其中真命題的個數為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數g(x)=f(1-x)-kx+k-
恰有三個不同的零點,則k的取值范圍是( )
A. (-2-,0]∪
B. (-2+
,0]∪
C. (-2-,0]∪
D. (-2+
,0]∪
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修:不等式選講
已知函數f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關于x的不等式f(x)≤|3m+1|有解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的內接等邊三角形
的面積為
(其中
為坐標原點).
(1)試求拋物線的方程;
(2)已知點兩點在拋物線
上,
是以點
為直角頂點的直角三角形.
①求證:直線恒過定點;
②過點作直線
的垂線交
于點
,試求點
的軌跡方程,并說明其軌跡是何種曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在圓上任取一點
,過點
作
軸的垂線段
,
為垂足.當點
在圓上運動時,線段
的中點
形成軌跡
.
(1)求軌跡的方程;
(2)若直線與曲線
交于
兩點,
為曲線
上一動點,求
面積的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一某班的某次數學測試成績(滿分為100分)的莖葉圖和頻率分布直方圖都受了不同程度的破壞,但可見部分如圖,據此解答下列問題:
(1)求分數在的頻率及全班人數;
(2)求分數在之間的頻數,并計算頻率分布直方圖中
間的矩形的高.
(3)若從分數在和分數在90分以上的試卷選3份試卷進行試卷分析,求最高分的試卷被抽中的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com